Home Technology Softening of high purity aluminum and copper processed by high pressure torsion
Article
Licensed
Unlicensed Requires Authentication

Softening of high purity aluminum and copper processed by high pressure torsion

  • Kaveh Edalati , Yuki Ito , Kenichiro Suehiro and Zenji Horita
Published/Copyright: June 11, 2013

Abstract

High purity Al (99.99 wt.%) and high purity Cu (99.99 wt.%) were processed using high pressure torsion. The mechanism for unusual softening in Al after the resultant intense plastic straining was investigated. The pure Cu was used to simulate a thermal effect on the hardness behavior and microstructural evolution after processing. This simulation consists of processing and subsequently keeping the pure Cu at the temperature equivalent to room temperature for pure Al. It is shown that the softening of the processed Cu occurs by static recrystallization. It is then suggested that the softening in Al should be due to recovery and/or recrystallization. Whereas the softening in Cu occurs rather slowly, it is very quick in Al and it may even be dynamic during processing by high pressure torsion.


* Correspondence address: Prof. Zenji Horita, 744 Motooka, Nishi-ku, Fukuoka-shi, Fukuoka 819-0395, Japan. Tel.: (+81) 92 802 2992, Fax: (+81) 92 802 2992, E-mail:

References

[1] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103189.10.1016/S0079-6425(99)00007-9Search in Google Scholar

[2] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893979.10.1016/j.pmatsci.2008.03.002Search in Google Scholar

[3] A.Vorhauer, R.Pippan: Scripta Mater.51 (2004) 921925.10.1016/j.scriptamat.2004.04.025Search in Google Scholar

[4] Y.Harai, Y.Ito, Z.Horita: Scripta Mater.58 (2008) 469472.10.1016/j.scriptamat.2007.10.037Search in Google Scholar

[5] F.Wetscher, A.Vorhauer, R.Pippan: Mater. Sci. Eng. A410–411 (2005) 213216.10.1016/j.msea.2005.08.027Search in Google Scholar

[6] T.Hebesberger, H.P.Stuwe, A.Vorhauer, F.Wetscher, R.Pippan: Acta Mater.53 (2005) 393402.10.1016/j.actamat.2004.09.043Search in Google Scholar

[7] N.Hansen: Metall. Mater. Trans. A32 (2001) 29172935.10.1007/s11661-001-0167-xSearch in Google Scholar

[8] K.Edalati, T.Fujioka, Z.Horita: Mater. Sci. Eng. A497 (2008) 168173.10.1016/j.msea.2008.06.039Search in Google Scholar

[9] K.Edalati, T.Fujioka, Z.Horita: Mater. Trans.50 (2009) 4450.10.2320/matertrans.MD200812Search in Google Scholar

[10] K.Edalati, E.Matsubara, Z.Horita: Metall. Mater. Trans. A40 (2009) 20792086.10.1007/s11661-009-9890-5Search in Google Scholar

[11] Y.Harai, K.Edalati, Z.Horita, T.G.Langdon: Acta Mater.57 (2009) 11471153.10.1016/j.actamat.2008.10.046Search in Google Scholar

[12] C.Xu, Z.Horita, T.G.Langdon, Acta Mater.55 (2007) 203212.10.1016/j.actamat.2006.07.029Search in Google Scholar

[13] A.P.Zhilyaev, S.Lee, G.V.Nurislamova, R.Z.Valiev, T.G.Langdon: Scripta Mater.44 (2001) 27532758.10.1016/S1359-6462(01)00955-1Search in Google Scholar

[14] R.Z.Valiev, Y.V.Ivanisenko, E.F.Rauch, B.Baudelet: Acta Mater.44 (1996) 47054712.10.1016/S1359-6454(96)00156-5Search in Google Scholar

[15] Metals Handbook, Properties and Selection of Nonferrous Alloys and Special-Purpose Materials, Vol. 2, ASM International, USA (1990).Search in Google Scholar

[16] H.Mehrer (Ed.), Numerical data and functional relationships in science and technology, Diffusion in Solid Metals and Alloys, Vol. 26, Springer-Verlag, Berlin (1990).Search in Google Scholar

[17] H.Paul, J.H.Driver, C.Maurice, A.Piatkowski: Acta Mater.55 (2007) 833847.10.1016/j.actamat.2006.08.061Search in Google Scholar

[18] D.P.Field, R.C.Eames, T.M.Lillo: Scripta Mater.54 (2006) 983986.10.1016/j.scriptamat.2005.11.037Search in Google Scholar

[19] E.Schafler, M.B.Kerber: Mater. Sci. Eng. A462 (2007) 139143.10.1016/j.msea.2005.11.085Search in Google Scholar

[20] H.Jiang, Y.T.Zhu, D.P.Butt, I.V.Alexandrov, T.C.Lowe: Mater. Sci. Eng. A290 (2000) 128138.10.1016/S0921-5093(00)00919-9Search in Google Scholar

[21] A.Takayama, X.Xang, H.Miura, T.Sakai: Mater. Sci. Eng. A478 (2008) 221228.10.1016/j.msea.2007.05.115Search in Google Scholar

[22] A.R.Kilmametov, G.Vaughan, A.R.Yavari, A.LeMoulec, W.J.Botta, R.Z.Valiev: Mater. Sci. Eng. A503 (2009) 1013.10.1016/j.msea.2008.11.023Search in Google Scholar

[23] J.P.Hirth, J.Lothe: Theory of Dislocations, McGraw-Hill, New York, NY (1968).Search in Google Scholar

[24] A.P.Zhilyaev, T.R.McNelley, T.G.Langdon: J. Mater. Sci.42 (2007) 15171528.10.1007/s10853-006-0628-0Search in Google Scholar

Received: 2009-4-25
Accepted: 2009-9-9
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 1.1.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110231/html
Scroll to top button