Grain refinement and growth induced by severe plastic deformation
-
Yanbo Wang
, Xiaozhou Liao and Yuntian Zhu
Abstract
Severe plastic deformation techniques have been widely used to produce bulk ultrafine-grained and nanocrystalline materials. Severe plastic deformation of materials is a complex process that includes both grain refinement via the activities of dislocations and twinning, and grain growth. In this paper, we present a short review on the mechanisms of grain refinement and grain growth induced by severe plastic deformation.
References
[1] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103–189.10.1016/S0079-6425(99)00007-9Search in Google Scholar
[2] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881–981.10.1016/j.pmatsci.2006.02.003Search in Google Scholar
[3] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893–979.10.1016/j.pmatsci.2008.03.002Search in Google Scholar
[4] R.Z.Valiev, I.V.Alexandrov, Y.T.Zhu, T.C.Lowe: J. Mater. Res.17 (2002) 5–8.10.1557/JMR.2002.0002Search in Google Scholar
[5] Y.M.Wang, M.W.Chen, F.H.Zhou, E.Ma: Nature419 (2002) 912–915. PMid:12410306;10.1038/nature01133Search in Google Scholar
[6] S.Komura, M.Furukawa, Z.Horita, M.Nemoto, T.G.Langdon: Mater. Sci. Eng. A297 (2001) 111–118.10.1016/S0921-5093(00)01255-7Search in Google Scholar
[7] F. DallaTorre, R.Lapovok, J.Sandlin, P.F.Thomson, C.H.J.Davies, E.V.Pereloma: Acta Mater.52 (2004) 4819–4832.10.1016/j.actamat.2004.06.040Search in Google Scholar
[8] N.Hansen, X.Huang: Acta Mater.46 (1998) 1827–1836.10.1016/S1359-6454(97)00365-0Search in Google Scholar
[9] D.A.Hughes, N.Hansen: Acta Mater.45 (1997) 3871–3886.10.1016/S1359-6454(97)00027-XSearch in Google Scholar
[10] X.Z.Liao, Y.H.Zhao, Y.T.Zhu, R.Z.Valiev, D.V.Gunderov: J. Appl. Phys.96 (2004) 636–640.10.1063/1.1757035Search in Google Scholar
[11] B.Bay, N.Hansen, D.A.Hughes, D.Kuhlmann-Wilsdorf: Acta Mater.40 (1992) 205–219.10.1016/0956-7151(92)90296-QSearch in Google Scholar
[12] Q.Liu, D. JuulJensen, N.Hansen: Acta Mater.46 (1998) 5819–5838.10.1016/S1359-6454(98)00229-8Search in Google Scholar
[13] J.Y.Huang, Y.T.Zhu, H.Jiang, T.C.Lowe: Acta Mater.49 (2001) 1497–1505.10.1016/S1359-6454(01)00069-6Search in Google Scholar
[14] D.A.Hughes, N.Hansen: Metall. Trans. A24 (1993) 2021–2037.10.1007/BF02666337Search in Google Scholar
[15] X.Z.Liao, J.Y.Huang, Y.T.Zhu, F.Zhou, E.J.Lavernia: Phil. Mag.83 (2003) 3065–3075.10.1080/1478643031000152799Search in Google Scholar
[16] X.Huang, G.Winther, N.Hansen, T.Hebesberger, A.Vorhauer, R.Pippan, M.Zehetbauer: Mater. Sci. Forum426–4 (2003) 2819–2824.10.4028/www.scientific.net/MSF.426-432.2819Search in Google Scholar
[17] Y.S.Li, N.R.Tao, K.Lu: Acta Mater.56 (2008) 230–241.10.1016/j.actamat.2007.09.020Search in Google Scholar
[18] J.W.Christian, S.Mahajan: Prog. Mater. Sci.39 (1995) 1–157.10.1016/0079-6425(94)00007-7Search in Google Scholar
[19] K.Wang, N.R.Tao, G.Liu, J.Lu, K.Lu: Acta Mater.54 (2006) 5281–5291.10.1016/j.actamat.2006.07.013Search in Google Scholar
[20] M.A.Meyers, U.R.Andrade, A.H.Chokshi: Metall. Mater. Trans. A26 (1995) 2881–2893.10.1007/BF02669646Search in Google Scholar
[21] M.A.Meyers, O.Vöhringer, V.A.Lubarda: Acta Mater.49 (2001) 4025–4039.10.1016/S1359-6454(01)00300-7Search in Google Scholar
[22] X.Z.Liao, Y.H.Zhao, S.G.Srinivasan, Y.T.Zhu, R.Z.Valiev, D.V.Gunderov: Appl. Phys. Lett.84 (2004) 592–594.10.1063/1.1644051Search in Google Scholar
[23] X.L.Wu, Y.T.Zhu: Appl. Phys. Lett.89 (2006) 031922/1–3.Search in Google Scholar
[24] X.L.Wu, E.Ma: Appl. Phys. Lett.88 (2006) 061905/1–3.Search in Google Scholar
[25] V.Yamakov, D.Wolf, S.R.Phillpot, A.K.Mukherjee, H.Gleiter: Nature Mater.1 (2002) 45–48. PMid:12618848;10.1038/nmat700Search in Google Scholar PubMed
[26] H.Van Swygenhoven: Science296 (2002) 66. PMid:11935012;10.1126/science.1071040Search in Google Scholar PubMed
[27] N.Thompson, D.J.Millard: Philos. Mag.43 (1952) 422–440.10.1080/14786440408520175Search in Google Scholar
[28] X.L.Wu, Y.T.Zhu: Phys. Rev. Lett.101 (2008) 025503/1–4.Search in Google Scholar
[29] Y.B.Wang, M.L.Sui, E.Ma: Philos. Mag. Lett.87 (2007) 935–942.10.1080/09500830701591493Search in Google Scholar
[30] Y.T.Zhu, X.Z.Liao, S.G.Srinivasan, Y.H.Zhao, M.I.Baskes, F.Zhou, E.J.Lavernia: Appl. Phys. Lett.85 (2004) 5049–5051.10.1063/1.1823042Search in Google Scholar
[31] Y.T.Zhu, X.Z.Liao, S.G.Srinivasan, E.J.Lavernia: J. Appl. Phys.98 (2005) 034319/1–8.Search in Google Scholar
[32] Z.W.Wang, Y.B.Wang, X.Z.Liao, Y.H.Zhao, E.J.Lavernia, Y.T.Zhu, Z.Horita, T.G.Langdon: Scripta Mater.60 (2009) 52–55.10.1016/j.scriptamat.2008.08.032Search in Google Scholar
[33] W.Z.Han, S.D.Wu, S.X.Li, Z.F.Zhang: Appl. Phys. Lett.92 (2008) 221909/1–3.Search in Google Scholar
[34] L.Lu, Y.F.Shen, X.H.Chen, L.H.Qian, K.Lu: Science304 (2004) 422–426. PMid:15031435;10.1126/science.1092905Search in Google Scholar PubMed
[35] L.Lu, R.Schwaiger, Z.W.Shan, M.Dao, K.Lu, S.Suresh: Acta Mater.53 (2005) 2169–2179.10.1016/j.actamat.2005.01.031Search in Google Scholar
[36] L.Lu, X.Chen, X.Huang, K.Lu: Science323 (2009) 607–610. PMid: 19179523;10.1126/science.1167641Search in Google Scholar
[37] Y.B.Wang, B.Wu, M.L.Sui: Appl. Phys. Lett.93 (2008) 041906/1–3.Search in Google Scholar
[38] Y.B.Wang, M.L.Sui: Appl. Phys. Lett.94 (2009) 021909/1–3.Search in Google Scholar
[39] Y.H.Zhao, Y.T.Zhu, X.Z.Liao, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A463 (2007) 22–26.10.1016/j.msea.2006.08.119Search in Google Scholar
[40] F.A.Mohamed: Acta Mater.51 (2003) 4107–4119.10.1016/S1359-6454(03)00230-1Search in Google Scholar
[41] A.P.Zhilyaev, G.V.Nurislamova, B.K.Kim, M.D.Baró, J.A.Szpunar, T.G.Langdon: Acta Mater.51 (2003) 753–765.10.1016/S1359-6454(02)00466-4Search in Google Scholar
[42] K.Zhang, J.R.Weertman, J.A.Eastman: Appl. Phys. Lett.87 (2005) 061921/1–3.Search in Google Scholar
[43] X.Z.Liao, A.R.Kilmanetov, R.Z.Valiev, H.S.Gao, X.D.Li, A.K.Mukherjee, J.F.Bingert, Y.T.Zhu: Appl. Phys. Lett.88 (2006) 021909/1–3.Search in Google Scholar
[44] Y.B.Wang, J.C.Ho, X.Z.Liao, H.Q.Li, S.P.Ringer, Y.T.Zhu: Appl. Phys. Lett.94 (2009) 011908/1–3.Search in Google Scholar
[45] G.J.Fan, L.F.Fu, H.Choo, P.K.Liaw, N.D.Browning: Acta Mater.54 (2006) 4781–4792.10.1016/j.actamat.2006.06.016Search in Google Scholar
[46] D.S.Gianola, S.Van Petegem, M.Legros, S.Brandstetter, H.Van Swygenhoven, K.J.Hemker: Acta Mater.54 (2006) 2253–2263.10.1016/j.actamat.2006.01.023Search in Google Scholar
[47] G.J.Fan, Y.D.Wang, L.F.Fu, H.Choo, P.K.Liaw, Y.Ren, N.D.Browning: Appl. Phys. Lett.88 (2006) 171914/1–3.Search in Google Scholar
[48] M.Legros, D.S.Gianola, K.J.Hemker: Acta Mater.56 (2008) 3380–3393.10.1016/j.actamat.2008.03.032Search in Google Scholar
[49] Z.W.Shan, E.A.Stach, J.M.K.Wiezorek, J.A.Knap, D.M.Follstaedt, S.X.Mao: Science305 (2004) 654–657. PMid:15286368;10.1126/science.1098741Search in Google Scholar
[50] Y.B.Wang, B.Q.Li, M.L.Sui, S.X.Mao: Appl. Phys. Lett.92 (2008) 011903/1–3.Search in Google Scholar
[51] M. Yu.Gutkin, I.A.Ovid'ko, N.V.Skiba: Acta Mater.51 (2003) 4059–4071.10.1016/S1359-6454(03)00226-XSearch in Google Scholar
[52] F.Sansoz, V.Dupont: Appl. Phys. Lett.89 (2006) 111901/1–3.Search in Google Scholar
[53] M.W.Chen, X.Yan: Science308 (2005) 356c.10.1126/science.1107143Search in Google Scholar PubMed
[54] Y.B.Wang, J.C.Ho, Y.Cao, X.Z.Liao, H.Q.Li, Y.H.Zhao, E.J.Lavernia, S.P.Ringer, Y.T.Zhu: Appl. Phys. Lett.94 (2009) 091911/1–3.Search in Google Scholar
[55] L.Li, T.Ungár, Y.D.Wang, G.J.Fan, Y.L.Yang, N.Jia, Y.Ren, G.Tichy, J.Lendvai, H.Choo, P.K.Liaw: Scripta Mater.60 (2009) 317–320.10.1016/j.scriptamat.2008.10.031Search in Google Scholar
[56] H.Q.Li, H.Choo, Y.Ren, T.A.Saleh, U.Lienert, P.K.Liaw, F.Ebrahimi: Phys. Rev. Lett.101 (2008) 015502/1–4.Search in Google Scholar
© 2009, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Review of IJMR's centenary year
- Proceedings of the SPD Workshop, Melbourne, June 2009
- Feature
- Processing by severe plastic deformation:an ancient skill adapted for the modern world
- Review
- Grain refinement and growth induced by severe plastic deformation
- Basic
- The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
- Ductility of ultrafine-grained copper processed by equal-channel angular pressing
- Technical parameters affecting grain refinement by high pressure torsion
- Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
- Softening of high purity aluminum and copper processed by high pressure torsion
- An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
- Deformation mechanisms in an ultra-fine grained Al alloy
- Applied
- The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
- Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
- Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
- The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
- Plastic deformation analysis of accumulative back extrusion
- The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
- Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
- Mg alloy for hydrogen storage processed by SPD
- DGM News
- Personal/Conferences/Imprint
Articles in the same Issue
- Contents
- Contents
- Editorial
- Review of IJMR's centenary year
- Proceedings of the SPD Workshop, Melbourne, June 2009
- Feature
- Processing by severe plastic deformation:an ancient skill adapted for the modern world
- Review
- Grain refinement and growth induced by severe plastic deformation
- Basic
- The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
- Ductility of ultrafine-grained copper processed by equal-channel angular pressing
- Technical parameters affecting grain refinement by high pressure torsion
- Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
- Softening of high purity aluminum and copper processed by high pressure torsion
- An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
- Deformation mechanisms in an ultra-fine grained Al alloy
- Applied
- The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
- Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
- Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
- The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
- Plastic deformation analysis of accumulative back extrusion
- The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
- Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
- Mg alloy for hydrogen storage processed by SPD
- DGM News
- Personal/Conferences/Imprint