Startseite The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals

  • Roberto B. Figueiredo und Terence G. Langdon
Veröffentlicht/Copyright: 11. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Equal-channel angular pressing is an effective tool for producing exceptional grain refinement in bulk polycrystalline metals. Typically, processing in this way refines the grains to the submicrometer level in a wide range of metals but recent experiments have established that the mechanism of grain refinement is different in fcc and hcp metals. Specifically, the refining of grains in aluminum involves the introduction of elongated bands of cells or subgrains and the subsequent evolution of this structure into an array of ultrafine grains whereas in magnesium the limited number of slip systems leads to the formation of new grains along the existing grain boundaries. Because of these limitations, magnesium alloys are especially susceptible to the production of materials having bimodal grain distributions.


* Correspondence address Professor Terence G. Langdon, Departments of Aerospace & Mechanical Engineering and Materials, Science University of Southern California, Los Angeles, CA 90089-1453, U. S. A. Tel.: +1 213-740 0491, Fax: +1 213 740 8071, E-mail:

References

[1] R.Z.Valiev, R.K.Islamgaliev, I.V.Alexandrov: Prog. Mater. Sci.45 (2000) 103.10.1016/S0079-6425(99)00007-9Suche in Google Scholar

[2] R.Z.Valiev, Y.Estrin, Z.Horita, T.G.Langdon, M.J.Zehetbauer, Y.T.Zhu: JOM58 (4) (2006) 33.10.1007/s11837-006-0213-7Suche in Google Scholar

[3] R.Z.Valiev, T.G.Langdon: Prog. Mater. Sci.51 (2006) 881.10.1016/j.pmatsci.2006.02.003Suche in Google Scholar

[4] A.P.Zhilyaev, T.G.Langdon: Prog. Mater. Sci.53 (2008) 893.10.1016/j.pmatsci.2008.03.002Suche in Google Scholar

[5] Z.Horita, T.Fujinami, T.G.Langdon: Mater. Sci. Eng. A318 (2001) 34.10.1016/S0921-5093(01)01339-9Suche in Google Scholar

[6] S.Komura, Z.Horita, M.Nemoto, T.G.Langdon: J. Mater. Res.14 (1999) 4044.10.1557/JMR.1999.0546Suche in Google Scholar

[7] J.Gubicza, N.Q.Chinh, P.Szommer, A.Vinogradov, T.G.Langdon: Scripta Mater.56 (2007) 947.10.1016/j.scriptamat.2007.02.018Suche in Google Scholar

[8] J.Gubicza, N.Q.Chinh, J.L.Lábár, Z.Hegedüs, C.Xu, T.G.Langdon: Scripta Mater.58 (2008) 775.10.1016/j.scriptamat.2007.12.028Suche in Google Scholar

[9] I.Kim, W.S.Jeong, J.Kim, K.T.Park, D.H.Shin: Scripta Mater.45 (2001) 575.10.1016/S1359-6462(01)01065-XSuche in Google Scholar

[10] D.H.Shin, I.Kim, J.Kim, Y.S.Kim, S.L.Semiatin: Acta Mater.51 (2003) 983.10.1016/S1359-6454(02)00501-3Suche in Google Scholar

[11] I.Kim, J.Kim, D.H.Shin, X.Z.Liao, Y.T.Zhu: Scripta Mater.48 (2003) 813.10.1016/S1359-6462(02)00513-4Suche in Google Scholar

[12] Y.Fukuda, K.Oh-ishi, M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A420 (2006) 79.10.1016/j.msea.2006.01.086Suche in Google Scholar

[13] Y.Fukuda, K.Oh-ishi, M.Furukawa, Z.Horita, T.G.Langdon: Acta Mater.52 (2004) 1387.10.1016/j.actamat.2003.11.028Suche in Google Scholar

[14] Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Acta Mater.46 (1998) 3317.10.1016/S1359-6454(97)00494-1Suche in Google Scholar

[15] M.Furukawa, Y.Iwahashi, Z.Horita, M.Nemoto, T.G.Langdon: Mater. Sci. Eng. A257 (1998) 328.10.1016/S0921-5093(98)00750-3Suche in Google Scholar

[16] M.Furukawa, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A332 (2002) 97.10.1016/S0921-5093(01)01716-6Suche in Google Scholar

[17] T.G.Langdon: Mater. Sci. Eng. A462 (2007) 3.10.1016/j.msea.2006.02.473Suche in Google Scholar

[18] K.Oh-ishi, Z.Horita, M.Furukawa, M.Nemoto, T.G.Langdon: Metall. Mater. Trans. A29 (1998) 2011.10.1007/s11661-998-0027-zSuche in Google Scholar

[19] F.A.Mohamed: Acta Mater.53 (2003) 4107.10.1016/S1359-6454(03)00230-1Suche in Google Scholar

[20] R.Pippan, F.Wetscher, M.Hafok, A.Vorhauer, I.Sabirov: Adv. Eng. Mater.8 (2006) 1046.10.1002/adem.200600133Suche in Google Scholar

[21] R.B.Figueiredo, T.G.Langdon: Mater. Sci. Eng. A501 (2009) 105.10.1016/j.msea.2008.09.058Suche in Google Scholar

[22] R.B.Figueiredo, T.G.Langdon: J. Mater. Sci. (2009) 44 (2009) 4758.10.1007/s10853-009-3725-zSuche in Google Scholar

[23] R.B.Figueiredo, P.R.Cetlin, T.G.Langdon: Acta Mater.55 (2007) 4769.10.1016/j.actamat.2007.04.043Suche in Google Scholar

[24] S.X.Ding, C.P.Chang, P.W.Kao: Metall. Mater. Trans. A40 (2009) 415.10.1007/s11661-008-9747-3Suche in Google Scholar

[25] A.Yamashita, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A300 (2001) 142.10.1016/S0921-5093(00)01660-9Suche in Google Scholar

[26] K.Matsubara, Y.Miyahara, Z.Horita, T.G.Langdon: Acta Mater.51 (2003) 3073.10.1016/S1359-6454(03)00118-6Suche in Google Scholar

[27] Y.Miyahara, Z.Horita, T.G.Langdon: Mater. Sci. Eng. A420 (2006) 240.10.1016/j.msea.2006.01.043Suche in Google Scholar

[28] C.W.Su, L.Lu, M.O.Lai: Mater. Sci. Eng. A434 (2006) 227.10.1016/j.msea.2006.06.103Suche in Google Scholar

[29] H.Watanabe, T.Mukai, K.Ishikawa, K.Higashi: Scripta Mater.46 (2002) 851.10.1016/S1359-6462(02)00064-7Suche in Google Scholar

[30] H.K.Lin, J.C.Huang, T.G.Langdon: Mater. Sci. Eng. A402 (2005) 250.10.1016/j.msea.2005.04.018Suche in Google Scholar

[31] H.K.Kim, W.J.Kim: Mater. Sci. Eng. A385 (2004) 300.Suche in Google Scholar

[32] L.Jin, D.Lin, D.Mao, X.Zeng, B.Chen, W.Ding: Mater. Sci. Eng. A423 (2006) 247.10.1016/j.msea.2006.02.045Suche in Google Scholar

[33] K.Xia, J.T.Wang, X.Wu, G.Chen, M.Gurvan: Mater. Sci. Eng. A410–411 (2005) 324.10.1016/j.msea.2005.08.123Suche in Google Scholar

[34] R.Lapovok, R.Cottam, P.F.Thomson, Y.Estrin: J. Mater. Res.20 (2005) 1375.10.1557/JMR.2005.0180Suche in Google Scholar

[35] R.Lapovok, Y.Estrin, M.V.Popov, T.G.Langdon: Adv. Eng. Mater.10 (2008) 429.10.1002/adem.200700363Suche in Google Scholar

[36] S.E.Ion, F.J.Humphreys, S.H.White: Acta Metall.30 (1982) 1909.10.1016/0001-6160(82)90031-1Suche in Google Scholar

[37] A.Galiyev, R.Kaibyshev, G.Gottstein: Acta Mater.49 (2001) 1199.10.1016/S1359-6454(01)00020-9Suche in Google Scholar

[38] S.Spigarelli, M.El Mehtedi, M.Cabibbo, E.Evangelista, J.Kaneko, A.Jäger, V.Gartnerova: Mater. Sci. Eng. A462 (2007) 197.10.1016/j.msea.2006.03.155Suche in Google Scholar

[39] M.M.Myshlyaev, H.J.McQueen, A.Mwembela, E.Konopleva: Mater. Sci. Eng. A337 (2002) 121.10.1016/S0921-5093(02)00007-2Suche in Google Scholar

[40] T.Al-Samman, G.Gottstein: Mater. Sci. Eng. A490 (2008) 411.10.1016/j.msea.2008.02.004Suche in Google Scholar

Received: 2009-3-31
Accepted: 2009-8-21
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110228/html
Button zum nach oben scrollen