Home The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
Article
Licensed
Unlicensed Requires Authentication

The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging

  • Deliang Zhang , Aamir Muhktar , Vijay N. Nadakuduru and Stiliana Raynova
Published/Copyright: June 11, 2013
Become an author with De Gruyter Brill

Abstract

This paper assesses the possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging. In the work, inter-particle boundaries were categorized into three types: Type I-fresh surface/fresh surface boundaries, Type II-fresh surface/oxide covered surface boundaries and Type III-oxide covered surface/oxide covered surface boundaries. The possibility of turning each of these types of inter-particle boundaries into grain boundaries or interphase boundaries without causing significant grain/particle growth through plastic deformation, and the amount of plastic deformation needed were discussed. The related experimental findings were also reviewed. It was concluded that by using high strain powder compact forging the possibility of producing bulk nanostructured or ultrafine structured metallic materials is very high.


* Correspondence Address Prof. D. L. Zhang Waikato, Centre for Advanced Materials Department of Engineering, The University of Waikato Private Bag 3105, Hamilton 3140, New Zealand Tel.: +64 7 838 4783 Fax: +64 7 838 4835 E-mail:

References

[1] Z.Lee, F.Zhou, R.Z.Valiev, E.J.Lavernia, S.R.Nutt: Scripta Mater.51 (2004) 209.10.1016/j.scriptamat.2004.04.016Search in Google Scholar

[2] I.V.Alexandrov, Y.T.Zhu, T.C.Lowe, R.K.Islamgaliev, R.Z.Valiev: NanoStructurer Mater.10 (1998) 4534.Search in Google Scholar

[3] R.Z.Valiev: J. Mater. Sci.42 (2007) 1483.10.1007/s10853-006-1281-3Search in Google Scholar

[4] A.R.Yavari, W.J. BottaFilho, C.A.D.Rodrigues, C.Cardoso, R.Z.Valiev: Scripta Mater.46 (2002) 711.10.1016/S1359-6462(02)00057-XSearch in Google Scholar

[5] V.V.Stolyarov, Y.T.Zhu, T.C.Lowe, R.K.Islamgaliev, R.Z.Valiev: Mater. Sci. Eng. A282 (2000) 78.10.1016/S0921-5093(99)00764-9Search in Google Scholar

[6] M.Haouaoui, I.Karaman, H.J.Maier, K.T.Hartwig: Met. Mat. Trans. A35 (2004) 2935.10.1007/s11661-004-0241-2Search in Google Scholar

[7] I.Karaman, M.Haouaoui, H.J.Maier: J. Mater. Sci.42 (2007) 1561.10.1007/s10853-006-0987-6Search in Google Scholar

[8] K.Xia, X.Wu: Scripta Mater.53 (2005) 1225.10.1016/j.scriptamat.2005.08.012Search in Google Scholar

[9] K.Xia, X.Wu, T.Honma, S.P.Ringer: J Mater. Sci.42 (2007) 1551.10.1007/s10853-006-0819-8Search in Google Scholar

[10] W.Xu, T.Honma, X.Wu, S.P.Ringer, K.Xia: App. Phys. Lett.91 (2007) 031901.10.1063/1.2755923Search in Google Scholar

[11] W.Xu, X.Wu, D.Sadedin, G.Wellwood, K.Xia: App. Phys. Lett.92 (2008) 011924.10.1063/1.2832657Search in Google Scholar

[12] X.Zhang, H.Wang, M.Kassem, J.Narayan, C.C.Koch: Scripta Mater.46 (2002) 661.10.1016/S1359-6462(02)00048-9Search in Google Scholar

[13] K.M.Youssef, R.O.Scattergood, K.L.Murty, J.A.Horton, C.C.Koch: App. Phys. Lett.87 (2005) 091904.10.1063/1.2034122Search in Google Scholar

[14] K.M.Youssef, R.O.Scattergood, K.L.Murty, C.C.Koch: Scripta Mater.54 (2006) 251.10.1016/j.scriptamat.2005.09.028Search in Google Scholar

[15] S.Cheng, E.Ma, Y.M.Wang, L.J.Kecskes, K.M.Youssef, C.C.Koch, U.P.Trociewitz, K.Han: Acta Mater.53 (2005) 1521.10.1016/j.actamat.2004.12.005Search in Google Scholar

[16] D.L.Zhang, S.Raynova, C.C.Koch, R.O.Scattergood, K.M.Youssef: Mater. Sci. Eng. A410–411 (2005) 375.10.1016/j.msea.2005.08.109Search in Google Scholar

[17] C.C.Koch: J. Mat. Sci.42 (2007) 1403.10.1007/s10853-006-0609-3Search in Google Scholar

[18] G.P.Dinda, H.Rosner, G.Wilde: Mater. Sci. Eng. A410–411 (2005) 328.10.1016/j.msea.2005.08.091Search in Google Scholar

[19] D.Terada, S.Inoue, N.Tsuji: J. Mater. Sci.42 (2007) 1673.10.1007/s10853-006-0909-7Search in Google Scholar

[20] C.C.Koch, R.O.Scattergood, K.A.Darling, J.E.Semones: J. Mater. Sci.43 (2008) 7264.10.1007/s10853-008-2870-0Search in Google Scholar

[21] D.L.Zhang, A.Mukhtar, C.Kong, P.Munroe: J. Phys. Conference Series 144 (2009) 012028.10.1088/1742-6596/144/1/012028Search in Google Scholar

[22] G.E.Dieter, Mechanical Metallurgy, McGraw-Hill Book Company, London, 1988, 353.Search in Google Scholar

[23] D.L.Zhang, C.C.Koch, R.O.Scattergood: Mater. Sci. Eng. A516 (2009) 270.10.1016/j.msea.2009.03.024Search in Google Scholar

[24] G.R.Shaik, W.W.Milligan: Met. Mat. Trans. A28 (1997) 895.Search in Google Scholar

[25] L.He, L.F.Allard, K.Breder, E.Ma: J. Mater. Res.15 (2000) 904.10.1557/JMR.2000.0129Search in Google Scholar

[26] O.Ertorer, A.Zu'Niga, T.Topping, W.Moss, E.J.Lavernia: Met. Mat. Trans. A40 (2009) 91.10.1007/s11661-008-9688-xSearch in Google Scholar

[27] A.Šalak, M.Seleck, L.Parilák: J. Mater. Proc. Tech.143–144 (2003) 18.Search in Google Scholar

[28] K.Kondoh, T.Kaji, T.Hayashi, Y.Takeda: Adv. Powd. Met.2 (1992) 339.Search in Google Scholar

[29] D.L.Zhang, S.Raynova, V.Nadakuduru, P.Cao, B.Gabbitas, B.Robinson: Mater. Sci. Forum, 618–619 (2009) 513.10.4028/www.scientific.net/MSF.618-619.513Search in Google Scholar

[30] A.M.Harris, G.B.Schaffer, N.W.Page: Scripta Mater.34 (1996) 67.Search in Google Scholar

Received: 2009-5-8
Accepted: 2009-9-3
Published Online: 2013-06-11
Published in Print: 2009-12-01

© 2009, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Review of IJMR's centenary year
  5. Proceedings of the SPD Workshop, Melbourne, June 2009
  6. Feature
  7. Processing by severe plastic deformation:an ancient skill adapted for the modern world
  8. Review
  9. Grain refinement and growth induced by severe plastic deformation
  10. Basic
  11. The nature of grain refinement in equal-channel angular pressing: a comparison of representative fcc and hcp metals
  12. Ductility of ultrafine-grained copper processed by equal-channel angular pressing
  13. Technical parameters affecting grain refinement by high pressure torsion
  14. Nanocrystalline body-centred cubic beta-titanium alloy processed by high-pressure torsion
  15. Softening of high purity aluminum and copper processed by high pressure torsion
  16. An atom probe characterisation of grain boundaries in an aluminium alloy processed by equal-channel angular pressing
  17. Deformation mechanisms in an ultra-fine grained Al alloy
  18. Applied
  19. The effect of back pressure on mechanical properties of an Mg-3 wt.% Al-1 wt.% Zn alloy with single pass equal channel angular pressing
  20. Nanostructuring of Ti-alloys by SPD processing to achieve superior fatigue properties
  21. Improvement in the strength and ductility of Al-Mg-Mn alloys with Zr and Sc additions by equal channel angular pressing
  22. The effect of initial microstructure and processing temperature on microstructure and texture in multilayered Al/Al(Sc) ARB sheets
  23. Plastic deformation analysis of accumulative back extrusion
  24. The possibility of synthesizing bulk nanostructured or ultrafine structured metallic materials by consolidation of powders using high strain powder compact forging
  25. Use of residual hydrogen to produce CP-Ti powder compacts for low temperature rolling
  26. Mg alloy for hydrogen storage processed by SPD
  27. DGM News
  28. Personal/Conferences/Imprint
Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110235/html
Scroll to top button