Startseite Testing of pipe sections
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Testing of pipe sections

  • Anatolii Andreiev , Oleksandr Golovko , Iaroslav Frolov , Florian Nürnberger , Lars Oliver Wolf , Mirko Schaper und Olexandr Grydin
Veröffentlicht/Copyright: 3. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A device and the basic technology has been developed for tensile testing pipe sections samples (tensile testing PSS) for quantitative estimating ultimate tensile and yield stresses in ring samples (PSS samples) cut from pipes. This tensile testing device provides the opportunity for compensating frictional forces during the tensile test, and using exchangeable bearings, the device can be adapted to a wide assortment of pipes. Research has been carried out regarding the shape and size of a stress concentrator introduced into the sample. Relationships have been derived between the shape of the tensile loading curves and the characteristic forces for different types of stress concentrators. It is proposed to use PSS with stress concentrators to prevent plastic deformation in one of the supporting sections (this also allows to correlate the applied forces to one section). The concentrator should be introduced into the tube wall of the sample as a drilled hole. This method is comparatively simple with respect to established testing methods.

Kurzfassung

Eine Prüfvorrichtung und die grundlegende Technologie zur quantitativen Bewertung von Zugfestigkeit und Dehngrenze mittels Zugversuchen an Rohrabschnitten (Ringzugversuche) wurden entwickelt. Die Prüfvorrichtung bietet die Möglichkeit zur Kompensation von Reibungskräften während der Prüfung. Dank austauschbarer Lager ist diese für eine Vielzahl von unterschiedlichen Rohren verwendbar. Die Untersuchung befasst sich eingehend mit der Form des Probenkörpers sowie der Größe des Spannungskonzentrators. Zusammenhänge zwischen den Kurvenverläufen und den charakteristischen Kräften, ausgehend von verschiedenen Spannungskonzentratoren werden dargestellt. Für derartige Tests bieten sich Rohrabschnitte mit lokaler Spannungskonzentration an, um plastische Deformationen in einem der gelagerten Bereiche zu vermeiden (dies erlaubt die Spannungskonzentration der aufgebrachten Kräfte auf einen Bereich). Zur Spannungskonzentration an der Probe sollte eine Durchgangsbohrung in die Rohrwand eingebracht werden. Im Vergleich zu üblichen Prüfverfahren ist die vorgestellte Testmethode eine einfache und anwendungsfreundliche Möglichkeit.


§Correspondence Address Dipl.-Ing. Lars Oliver Wolf, Leibniz Universität Hannover, Institut für Werkstoffkunde, An der Universität 2, D-30823 Garbsen, Germany, E-mail:

M. Sc. Anatolii Andreiev, born in 1990, is Scientific Assistant and PhD student at the Department of Metal Forming at the National Metallurgical Academy of Ukraine. He works on deformation modes of seamless tubes and pipes production.

Prof. Dr. Oleksandr Golovko, born in 1972, is Chair of the Department of Metal Forming at the National Metallurgical Academy of Ukraine. His scientific interests relate to extrusion and integrated technologies in light alloys production.

Prof. Dr. Iaroslav Frolov, born in 1975, is Vice Chair of the Department of Metal Forming at the National Metallurgical Academy of Ukraine. His scientific interests concentrate on relations between properties of metal and deformation and thermal modes of treatment.

Dr.-Ing. Florian Nürnberger, born in 1977, is Chief Engineer at the Institut für Werkstoffkunde (Materials Science) of the Leibniz Universität Hannover, Germany. His main research interests are integrated heat treatment processes.

Dipl.-Ing. Lars Oliver Wolf, born in 1985, is Scientific Assistant and PhD student at the Institut für Werkstoffkunde (Materials Science) of the Leibniz Universität Hannover, Germany. His research interests concentrate on heat treatment processes of HSLA steels as well as of quenched and tempered steels.

Prof. Dr.-Ing. habil. Mirko Schaper, born in 1966, is Head of the Chair of Materials Science (Universität Paderborn, Germany). His scientific topics are design and characterization of new high-strength metallic-based materials, microstructure specific material modeling and development of casting technologies.

Dr. Olexandr Grydin, born in 1976, is Chief Engineer at the Chair of Materials Science (Universität Paderborn, Germany). His scientific interests lie in the field of materials processing technologies such as twin-roll casting, extrusion of light metals and integrated heat treatment as well as materials characterization and mathematical modeling of their behavior.


References

1 DSTU 3365-96: Metal Tubes: Selection of Testings, Tube Stocks and Specimens for Mechanic and Technological Tests, Ukrainian National Standard (1998) (in Ukrainian)Suche in Google Scholar

2 V.Dehtjarev, I.Frolov, A.Bobuh, O.Kulak, T.Svjatyna: Stress analysis at tensile testing of ring samples, Metallurgicheskaja i gornorudnaja promyshlennost'7 (2012), pp. 227233 (in Russian)Suche in Google Scholar

3 S.Arsene, J.Bai: A new approach to measuring transverse properties of structural tubing by a ring test, Journal of Testing and Evaluation24 (1996), No. 6, pp. 38639110.1520/JTE11461JSuche in Google Scholar

4 T. M.Link, D. A.Koss, A. T.Motta: Failure of zircaloy cladding under transverse plane-strain deformation, Nuclear Engineering and Design186 (1998), pp. 37939410.1016/S0029-5493(98)00284-2Suche in Google Scholar

5 DSTU 2528-94: A Method for Tensile Testing of Annular Specimens under Conditions of Heating (Ukrainian National Standard (1995) (in Russian)Suche in Google Scholar

6 ISO 8496: Metallic Materials, Tube Ring Tensile Test (2013)Suche in Google Scholar

7 Transvalor Forge v2008 2D and 3D Forging Data File – Users GuideSuche in Google Scholar

8 E. A.Krajnyuk, A. S.Mitrofanov, L. S.Ozhigov, V. I.Savchenko: Strength and ductility of metal of heat-exchanging tubes of steam generator of power units with reactors WWER-1000, Voprosy Atomnoj Nauki i Tekhniki, Fizika Radiatsionnykh Povrezhdenij i Radiatsionnoe Materialovedenie m2 (2012), pp. 5255 (in Russian)Suche in Google Scholar

9 V. V.Kovalev, V. N.Kiselevskii, V. A.Borisenko, V. V.Bukhanovskii: High-temperature strength of KTTs-110 zirconium alloy, Strength of Materials36 (2004), No. 3, pp. 31432010.1023/B:STOM.0000035765.22963.adSuche in Google Scholar

10 J. E.Bringas: Handbook of Comparative World Steel Standards, ASTM International, West Conshohocken, PA, USA (2004)Suche in Google Scholar

Published Online: 2015-07-03
Published in Print: 2015-07-15

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 6.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110759/html
Button zum nach oben scrollen