Home Technology Effect of Ti-Al-O inclusions on the formation of intragranular acicular ferrite
Article
Licensed
Unlicensed Requires Authentication

Effect of Ti-Al-O inclusions on the formation of intragranular acicular ferrite

  • Zhengyu Cai , Yahui Zhou , Lianhai Tong , Qiang Yue and Hui Kong
Published/Copyright: July 3, 2015
Become an author with De Gruyter Brill

Abstract

The role of Ti-Al-O inclusions on nucleation of intragranular acicular ferrite (IAF) was investigated by scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). From SEM-EDS mapping images, two kinds of titanium containing oxides are observed. Type I is a Ti-Al-O phase, in which the elements of Al and Ti coexist. Type II is the titanium containing oxide, which precipitates on Al2O3. By statistical analysis, it can be seen that Type I is dominating in number, and its molar ratio of Ti/Al varied in a wide range, which reflects its composition complexity. After etching, microstructure of IAF is observed. It can be seen that sulfur accumulates on the periphery of nucleation Ti-Al-O inclusion, which is attributed to the precipitation of MnS. Moreover, this accumulation accompanies increasing in content ratio of Al/Ti, which could be explained by titanium vacancies. These vacancies can absorb Mn ions from the steel matrix around inclusions, which leads to a Mn depletion zone (MDZ). Its existence is confirmed by EDS line scanning, and considered to facilitate the formation of IAF since Mn is an austenite stabilizer.

Kurzfassung

Für den vorliegenden Beitrag wurde die Bedeutung von Ti-Al-O-Einschlüssen auf die Keimbildung von interkristallinem Nadelferrit (Intragranular Acicular Ferrite (IAF)) mittels Rasterelektronenmikroskopie (REM) und Energiedispersiver Spektroskopie (EDS) untersucht. Aus den REM-EDS-Mappings konnten zwei titanhaltige Oxide identifiziert werden. Beim Typ I handelt es sich um eine Ti-Al-O-Phase, in der die Elemente Al und Ti koexistieren. Der Typ II ist ein titanhaltiges Oxid, das sich auf Al2O3 abscheidet. Mittels statistischer Analyse kann gezeigt werden, dass der Typ I dominiert und dass dessen molares Ti/Al-Verhältnis über einen weiten Bereich variiert, was auch die Komplexität der Zusammensetzung verdeutlicht. Nach dem Ätzen kann die Mikrostruktur des Nadelferrits beobachtet werden. Daraus ist ersichtlich, dass sich Schwefel in der Peripherie der gebildeten Ti-Al-O-Einschlüsse ansammelt, was auf die Ausscheidung von MnS zurückzuführen ist. Darüber hinaus ist diese Akkumulation von einem ansteigenden Al/Ti-Verhältnis begleitet, was sich durch Titanleerstellen erklären lässt. Diese Leerstellen können Manganionen aus der Stahlmatrix, die die Einschlüsse umgibt, aufnehmen, was zu einer manganvermiderten Zone führt (Mn Depletion Zone (MDZ)). Ihre Existenz bestätigt sich mittels EDS-Linescans und es wird angenommen, dass sie die Bildung von Nadelferrit erleichtert, zumal Mangan ein austenitstabilisierendes Element ist.


§Correspondence Address Associate Prof. Dr. Cai Zhengyu, School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China, E-mail:

Associate Prof. Zhengyu Cai, born in 1976, graduated from Southeast University, PR China, where she majored in Applied Chemistry, and received a Master degree. Currently, she is Associate Professor and works in the School of Chemistry and Chemical Engineering, Anhui University of Technology in Maanshan, Anhui, PR China.

Yahui Zhou, born in 1990, graduated from Anhui University of Technology, PR China, where he majored in Metallurgical Engineering, and received a Bachelor's degree. Currently, he is a postgraduate and works in the School of Metallurgical Engineering, Anhui University of Technology in Maanshan, Anhui, PR China.

Lianhai Tong, born in 1988, graduated from Jiangsu University of Science and Technology, PR China, where he majored in Metallurgical Engineering, and received a Bachelor's degree. Currently, he is a postgraduate and works in the School of Metallurgical Engineering, Anhui University of Technology in Maanshan, Anhui, PR China.

Associate Prof. Qiang Yue, born in 1980, graduated from Northeastern University, PR China, where he majored in Metallurgical Engineering, and received a Doctor's degree. Currently, he is Associate Professor and works in the School of Metallurgical Engineering, Anhui University of Technology in Maanshan, Anhui, PR China.

Prof. Dr. Hui Kong, born in 1980, graduated from University of Science and Technology of China, where he majored in Material Physics and Chemistry, and received a Doctor's degree. He is Professor and works in the School of Metallurgical Engineering, Anhui University of Technology in Maanshan, Anhui, PR China.


References

1 J.Takamura, S.Mizoguchi: Roles of oxides in steel performance, Proceedings of the 6th Intern. Iron and Steel Congress, Vol. 1, ISIJ, Tokyo (1990), pp. 591597Search in Google Scholar

2 Z.Zhang, R. A.Farrar: Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals, Materials Science and Technology12 (1996), No. 3, pp. 23726010.1179/026708396790165704Search in Google Scholar

3 B. L.Bramfitt: The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron, Metallurgical Transactions7 (1970), pp. 1987199510.1007/BF02642799Search in Google Scholar

4 G. S.Barritte, D. V.Edmonds: Advances in the Physical Metallurgy and Applications of Steel, The Metals Society, London, UK (1981)Search in Google Scholar

5 J. H.Shim, Y. J.Oh, J. Y.Suh, Y. W.Cho, J. D.Shim, J. S.Byun: Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Materialia49 (2001), No. 12, pp. 2115212210.1016/S1359-6454(01)00134-3Search in Google Scholar

6 J. S.Byun, J. H.Shim, Y. W.Cho, D. N.Lee: Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel, Acta Materialia51 (2003), No. 6, pp. 1593160610.1016/S1359-6454(02)00560-8Search in Google Scholar

7 C. C.Zheng, X. M.Wang, S. R.Li, C. J.Shang, L. X.He: Effects of inclusions on microstructure and properties of heat-affected zone for low carbon steels, Science China Technological Sciences55 (2012), No. 6, pp. 1556156510.1007/s11431-012-4812-ySearch in Google Scholar

8 J. H.Shim, Y. W.Cho, S. H.Chuang: Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta Materialia47 (1999), No. 6, pp. 2751276010.1016/S1359-6454(99)00114-7Search in Google Scholar

9 A.Madariaga, L.Gutierrez: Role of the particle matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel, Acta Materialia47 (1999), No. 3, pp. 95196010.1016/S1359-6454(98)00388-7Search in Google Scholar

10 K.Zhu, Z. G.Yang: Effect of Mg addition on the ferrite grain boundaries misorientation in HAZ of low carbon steels, Journal of Materials Science & Technology27 (2011), No. 3, pp. 25225610.1016/S1005-0302(11)60058-3Search in Google Scholar

11 C.Wang, N. T.Nuhfer, S.Sridhar: Transient behavior of inclusion chemistry, shape and structure in Fe-Al-Ti-O melts: Effect of titanium source and laboratory deoxidation simulation, Metallurgical and Materials Transactions B40 (2009), No. 6, pp. 1005102110.1007/s11663-009-9267-6Search in Google Scholar

12 C.Wang, N. T.Nuhfer, S.Sridhar: Transient behavior of inclusion chemistry, shape, and structure in Fe-Al-Ti-O melts: Effect of titanium/aluminum ratio, Metallurgical and Materials Transactions B40 (2009), No. 6, pp. 1022103410.1007/s11663-009-9290-7Search in Google Scholar

13 H.Kong, S.Shao, Y.-P.Shen, Y.-H.Zhou, Q.Yue, J.-F.Zhang, Z.-Y.Cai: Effect of aluminum on the nucleation of intragranular ferrite in Ti-added carbon structural steel, High Temperature Materials and Processes32 (2013), No. 3, pp. 32332910.1515/htmp-2012-0139Search in Google Scholar

14 K.Hui, Z.YaHui, L.Hao, X.Yunjin, L.Jie, Y.Qiang, C.ZhengYu: The mechanism of intragranular acicular ferrite nucleation induced by Mg-Al-O inclusions, Advances in Materials Science and Engineering (2015), pp. 37867837868310.1155/2015/378678Search in Google Scholar

15 X. X.Deng, M.Jiang, X. H.Wang: Mechanisms of inclusion evolution and intragranular acicular ferrite formation in steels containing rare earth elements, Acta Metallurgica Sinica (English Letters)25 (2012), No. 3, pp. 24124810.11890/1006-7191-123-241Search in Google Scholar

16 Z. T.Ma, D.Janke: Characteristics of oxide precipitation and growth during solidification of deoxidized steel, ISIJ International38 (1998), No. 1, pp. 465210.2355/isijinternational.38.46Search in Google Scholar

17 K.Yamamoto, T.Hasegawa, J. I.Takamuram: Effect of boron on intragranular ferrite formation in Ti-oxide bearing steels, ISIJ International36 (1996), No. 1, pp. 808610.2355/isijinternational.36.80Search in Google Scholar

18 H.Mabuchi, R.Uemori, M.Fujioka: The role of Mn depletion in intragranular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ International36 (1996), No. 11, pp. 1406141210.2355/isijinternational.36.1406Search in Google Scholar

19 X.-F.Shi, G.-G.Cheng, P.Zhao: Effect of Al on inclusions in 430 stainless steel containing titanium, Iron Steel Vanadium Titanium32 (2011), No. 1, pp. 5761Search in Google Scholar

20 J. S.Byun, J. H.Shim, Y. W.Cho: Influence of Mn on microstructural evolution in Ti-killed C-Mn steel, Scripta Materialia48 (2003), No. 4, pp. 44945410.1016/S1359-6462(02)00437-2Search in Google Scholar

21 C. W.Yang, N. B.Lv, X. J.Zhuo, X. H.Wang, W. J.Wang: Study of MnS precipitation on Ti-Al complex deoxidation inclusions, Iron and Steel45 (2010), No. 11, pp. 3236Search in Google Scholar

22 D.Yang, M.Jiang, S. L.Lei, X. H.Wang, W. J.Wang: Laboratory study on formation of complex inclusions in ultra-low oxygen steel, Journal of Iron and Steel Research26 (2014), No. 1, pp. 1215Search in Google Scholar

23 R. D.Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A32 (1976), No. 5, pp. 75176710.1107/S0567739476001551Search in Google Scholar

Published Online: 2015-07-03
Published in Print: 2015-07-15

© 2015, Carl Hanser Verlag, München

Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110760/html
Scroll to top button