Prediction of the elastic modulus of SWCNT/epoxy composite based on the micromechanics
-
Hassan S. Hedia
, Saad M. Aldousari , Ahmed K. Abdellatif und Gamal S. Abdelhafeez
Abstract
Due to their superior mechanical and physical properties, carbon nanotubes seem to hold a great promise as an ideal reinforcing material for composites of high strength and low density. In most of the experimental results up to date, however, only modest improvements in the strength and stiffness have been achieved by incorporating carbon nanotubes in polymers. In the present paper, the stiffening effect of carbon nanotubes is quantitatively investigated by micromechanics methods. The Mori-Tanaka effective field method has been adopted to calculate the effective elastic moduli of composites with aligned or randomly oriented straight nanotubes. The rule-of-mixtures is used to calculate the modulus of elasticity for nanocomposite. The results of micromechanics methods indicated that the CNTs are highly anisotropic, with Young's modulus in the tube direction two orders of magnitude higher than that normal to the tube. The results of micromechanics methods were compared by those obtained from the rule-of-mixtures and good agreement was also achieved when the efficiency parameter Φ = 1 and typical results were achieved with Φ = 0.25. To predict the mechanical properties of the composite materials, it is worth considering the conventional rule-of-mixtures using exact value of the efficiency parameter Φ. To predict the elastic modulus of nanocomposite reinforced by SWCNT using the conventional rule-of-mixtures, the exact value of the efficiency parameter Φ is equal to 0.25 when using nanotubes with chirality (8,3) for determination the elastic modulus of SWCNT. However, for zigzag orientation and chirality (8,0) the efficiency parameter Φ is equal to 1. The conventional rule-of-mixtures is a powerful tool and easy method compared to the micromechanics methods.
Kurzfassung
Auf Grund ihrer überragenden mechanischen und physikalischen Eigenschaften zeichnen sich Carbon-Nanoröhrchen als ideales Material für Komposite mit hoher Festigkeit und niedriger Dichte aus. Bei den meisten bisherigen Ergebnissen wurden jedoch nur moderate Verbesserungen hinsichtlich der Festigkeit und der Steifigkeit erzielt, indem Carbon-Nanoröhrchen in Polymeren eingebaut wurden. In dem vorliegenden Beitrag wird darüber berichtet, wie der Versteifungseffekt von Carbon-Nanoröhrchen quantitativ mittels mikromechanischer Verfahren untersucht wurde. Es wurde die effektive Mori-Tanaka-Methode für Praxisanwendungen angewandt, um den effektiven Elastizitätsmodul von Kompositen mit ausgerichteten oder beliebig orientierten geraden Nanoröhrchen zu berechnen. Das Vermischungsgesetz wurde angewandt, um den Elastizitätsmodul der Nanokomposite zu berechnen. Die Ergebnisse der mikromechanischen Verfahren deuten darauf hin, dass die CNTs hochgradig anisotrop sind, und zwar mit einem Elastizitätsmodul, der in der Richtung der Röhrchen zwei Größenordnungen höher ist als senkrecht zu den Röhrchen. Die Ergebnisse der mikromechanischen Verfahren wurden mit solchen, die aus der Mischungsregel resultieren, verglichen und es wurde eine gute Übereinstimmung erreicht, wenn der Effizienzparameter, Φ = 1 betrug und typische Ergebnisse wurden mit Φ = 0,25 erreicht. Um die mechanischen Eigenschaften der Kompositwerkstoffe vorherzusagen, erscheint es angeraten die konventionelle Mischungsregel unter Verwendung eines exakten Wertes für den Effizienzparameter Φ zu berücksichtigen. Um den Elastizitätsmodul von mit SWCNT-verstärkten Nanokompositen vorherzusagen, ist der exakte Wert des Effizienzparameters Φ gleich 0,25, wenn Nanoröhrchen mit Chiralität (8,3) zur Bestimmung des Elastizitätsmoduls der SWCNTs zu Grunde gelegt werden. Demgegenüber ist der Effizienzparameter Φ für Zick-Zack-Ausrichtung und Chiralität (8,0) gleich 1. Die konventionelle Mischungsregel hat sich als nützliches und einfaches Werkzeug im Vergleich zur Mikromechanik erwiesen.
References
1 S.Iijima: Helical microtubules of graphitic carbon, Nature354 (1991), pp. 56–5810.1038/354056a0Suche in Google Scholar
2 E. T.Thostenson, Z.Ren, T. W.Chou: Advances in the science and technology of carbon nanotubes and their composites, Composites Science and Technology61 (2001), No. 13, pp. 1899–191210.1016/S0266-3538(01)00094-XSuche in Google Scholar
3 K. I.Tserpes, P.Papanikos, G.Labeas, S. G.Pantelakis: Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites, Theoretical and Applied Fracture Mechanics49 (2008), pp. 51–6010.1016/j.tafmec.2007.10.004Suche in Google Scholar
4 E.Mohammadpour, M.Awang: Nonlinear finite element modeling of graphene and single- and multi-walled carbon nanotubes under axial tension, Applied Physics A106 (2012), pp. 581–58810.1007/s00339-011-6625-4Suche in Google Scholar
5 A. A.Mamedv, N. A.Kotov, M.Prato, D. M.Guldi, J. P.Wicksted, A.Hirsch: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials1 (2002), No. 3, pp. 190–19410.1038/nmat747Suche in Google Scholar
6 R. S.Ruoff, D.Qian, W. K.Liu: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, Comptes Redus Physique4 (2003), pp. 993–100810.1016/j.crhy.2003.08.001Suche in Google Scholar
7 Q.Lu, B.Bhattacharya: The role of atomistic simulations in probing the small scale aspect of fracture – A case study on a single walled carbon nanotube, Engineering Fracture Mechanics72 (2005), pp. 2031–207110.1016/j.engfracmech.2005.01.009Suche in Google Scholar
8 T.Belytschko: Atomistic simulations of nanotube fracture, Physical Review B65 (2002), pp. 1–810.1103/PhysRevB.65.235430Suche in Google Scholar
9 T.Natsuki, K.Tantrakan, M.Endo: Effects of carbon nanotube structures on mechanical properties, Applied Physics A24 (2004), pp. 79–11710.1007/s00339-003-2492-ySuche in Google Scholar
10 T.Chang, H.Gao: Size dependent elastic properties of a single carbon nanotube via molecular mechanics, Journal of the Mechanics and Physics of Solids51 (2003), pp. 1059–107410.1016/S0022-5096(03)00006-1Suche in Google Scholar
11 J. R.Xiao, B. A.Gama, Jr., J. W.Gillespie: An analytical molecular structural mechanics model for the mechanical properties of CNT, International Journal of Solids and Structures42 (2005), pp. 3075–309210.1016/j.ijsolstr.2004.10.031Suche in Google Scholar
12 C.Li, T. W.Chou: A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures40 (2003), pp. 2487–249910.1016/S0020-7683(03)00056-8Suche in Google Scholar
13 X.Sun, W.Zhao: Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach, Materials Science and Engineering: A390 (2005), pp. 366–3710.1016/j.msea.2004.08.020Suche in Google Scholar
14 L.Nasdala, G.Ernst: Development of a 4 node finite element for the computation of nanostructured materials, Computational Materials Science33 (2005), pp. 443–45810.1016/j.commatsci.2004.09.047Suche in Google Scholar
15 M.Sammalkorpi, A.Krasheninnikov, A.Kuronen, K.Nordlund, K.Kaski: Mechanical properties of carbon nanotubes with vacancies and related defects, Physical Review B70 (2004), pp. 245416.1–810.1103/PhysRevB.70.245416Suche in Google Scholar
16 M.Rossi, M.Michele: On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach, Composites Science and Technology69 (2009), pp. 1394–139810.1016/j.compscitech.2008.09.010Suche in Google Scholar
17 M.Ostoja-Starzewski: Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics21 (2006), pp. 112–13210.1016/j.probengmech.2005.07.007Suche in Google Scholar
18 R.Hill: Elastic properties of reinforced solids: Some theoretical principles, Journal of Mechanics and Physics of Solids11 (1963), No. 5, pp. 357–37210.1016/0022-5096(63)90036-XSuche in Google Scholar
19 J. H.Panchal, S. R.Kalidindi, D. L.McDowell: Key computational modeling issues in integrated computational materials engineering, Journal of Computer-Aided Design45 (2013), No. 1, pp. 4–2510.1016/j.cad.2012.06.006Suche in Google Scholar
20 S.Nemat-Nasser, M.Hori: Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, New York, USA (1993)21Suche in Google Scholar
21 T.Mori, K.Tanaka: Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica21 (1973), No. 5, pp. 571–57410.1016/0001-6160(73)90064-322Suche in Google Scholar
22 T.Mura: Micromechanics of Defects in Solids, Kluwer Academic Publishers, Dordrecht, The Netherlands (1987)10.1007/978-94-009-3489-4Suche in Google Scholar
23 R.Hill: A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids13 (1965), No. 4, pp. 213–22210.1016/0022-5096(65)90010-4Suche in Google Scholar
24 H. S.Hedia, S. M.Aldosari, A. K.Abdellatif, G. S.Abdelhafez: Estimation of the mechanical properties of nanocomposites based on the properties prediction of single wall carbon nanotubes (SWCNT), Materials Testing57 (2015), No. 5, pp. 447–45710.3139/120.110730Suche in Google Scholar
25 R.Andrews, D.Jacques, M.Minot, T.Rantell: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromolecular Materials and Engineering287 (2002), No. 6, pp. 395–40310.1002/1439Suche in Google Scholar
26 C. W.Fan, J.-H.Huang, C.Hwu, Y. Y.Liu: A finite element approach for estimation of Young's modulus of single-walled carbon nanotubes, Proc. of the Third Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, Hualian, Taiwan (2005), pp. 1–11Suche in Google Scholar
27 C.Filiou, C.Galiotis, D. N.Batchelder: Residual stress distribution in carbon-fiber thermoplastic matrix preimpregnated composite tapes, Composites23 (1992), No. 1, pp. 28–3810.1016/0010-4361(92)90283-ZSuche in Google Scholar
28 G. K.Dassios, S.Musso, C.Galiotis: Compressive behavior of MWCNT/epoxy composite materials, Composites Science and Technology72 (2012), pp. 1027–103310.1016/j.compscitech.2012.03.016Suche in Google Scholar
29 V.Datsyuk, M.Kalyva, K.Papagelis, J.Parthenios, D.Tasis, A.Siokou, I.Kallitsis, C.Galiotis: Chemical oxidation of multi-walled carbon nanotubes, Carbon46 (2008), No. 6, pp. 833–84010.1016/j.carbon.2008.02.012Suche in Google Scholar
© 2015, Carl Hanser Verlag, München
Artikel in diesem Heft
- Fachbeiträge/Technical Contributions
- Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K
- Temperature effects on tensile properties of laser sintered polyamide 12
- Friction stir spot welding of aluminum alloys: A recent review
- Numerical simulation and experimental validation of angular distortion and residual stresses in a T-joint
- Influence of cutting parameters and TiBN coating material on the drilling of Al6061-T4 sheets
- Testing of pipe sections
- Effect of Ti-Al-O inclusions on the formation of intragranular acicular ferrite
- Impact behavior of multi-layer carbon skin composite sandwich panels with 3D spacer fabric
- Effect of sintering temperature on transverse rupture strength of hot pressed Cu-TiC composites
- Grey-based fuzzy algorithm for the optimization of the ball burnishing process
- Analysis of influential factors for ultrasonic disc size evaluation
- Evaluation of double channel GMAW fillet welds of low carbon steel using solid wire
- Friction behavior of granite powder added brake pads
- Prediction of the elastic modulus of SWCNT/epoxy composite based on the micromechanics
- Modernization of a surface grinding machine with a novel ball screw drive
- Machining of an involute worm gear drive using the surface definition procedure
Artikel in diesem Heft
- Fachbeiträge/Technical Contributions
- Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K
- Temperature effects on tensile properties of laser sintered polyamide 12
- Friction stir spot welding of aluminum alloys: A recent review
- Numerical simulation and experimental validation of angular distortion and residual stresses in a T-joint
- Influence of cutting parameters and TiBN coating material on the drilling of Al6061-T4 sheets
- Testing of pipe sections
- Effect of Ti-Al-O inclusions on the formation of intragranular acicular ferrite
- Impact behavior of multi-layer carbon skin composite sandwich panels with 3D spacer fabric
- Effect of sintering temperature on transverse rupture strength of hot pressed Cu-TiC composites
- Grey-based fuzzy algorithm for the optimization of the ball burnishing process
- Analysis of influential factors for ultrasonic disc size evaluation
- Evaluation of double channel GMAW fillet welds of low carbon steel using solid wire
- Friction behavior of granite powder added brake pads
- Prediction of the elastic modulus of SWCNT/epoxy composite based on the micromechanics
- Modernization of a surface grinding machine with a novel ball screw drive
- Machining of an involute worm gear drive using the surface definition procedure