Startseite Technik Prediction of the elastic modulus of SWCNT/epoxy composite based on the micromechanics
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Prediction of the elastic modulus of SWCNT/epoxy composite based on the micromechanics

  • Hassan S. Hedia , Saad M. Aldousari , Ahmed K. Abdellatif und Gamal S. Abdelhafeez
Veröffentlicht/Copyright: 3. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Due to their superior mechanical and physical properties, carbon nanotubes seem to hold a great promise as an ideal reinforcing material for composites of high strength and low density. In most of the experimental results up to date, however, only modest improvements in the strength and stiffness have been achieved by incorporating carbon nanotubes in polymers. In the present paper, the stiffening effect of carbon nanotubes is quantitatively investigated by micromechanics methods. The Mori-Tanaka effective field method has been adopted to calculate the effective elastic moduli of composites with aligned or randomly oriented straight nanotubes. The rule-of-mixtures is used to calculate the modulus of elasticity for nanocomposite. The results of micromechanics methods indicated that the CNTs are highly anisotropic, with Young's modulus in the tube direction two orders of magnitude higher than that normal to the tube. The results of micromechanics methods were compared by those obtained from the rule-of-mixtures and good agreement was also achieved when the efficiency parameter Φ = 1 and typical results were achieved with Φ = 0.25. To predict the mechanical properties of the composite materials, it is worth considering the conventional rule-of-mixtures using exact value of the efficiency parameter Φ. To predict the elastic modulus of nanocomposite reinforced by SWCNT using the conventional rule-of-mixtures, the exact value of the efficiency parameter Φ is equal to 0.25 when using nanotubes with chirality (8,3) for determination the elastic modulus of SWCNT. However, for zigzag orientation and chirality (8,0) the efficiency parameter Φ is equal to 1. The conventional rule-of-mixtures is a powerful tool and easy method compared to the micromechanics methods.

Kurzfassung

Auf Grund ihrer überragenden mechanischen und physikalischen Eigenschaften zeichnen sich Carbon-Nanoröhrchen als ideales Material für Komposite mit hoher Festigkeit und niedriger Dichte aus. Bei den meisten bisherigen Ergebnissen wurden jedoch nur moderate Verbesserungen hinsichtlich der Festigkeit und der Steifigkeit erzielt, indem Carbon-Nanoröhrchen in Polymeren eingebaut wurden. In dem vorliegenden Beitrag wird darüber berichtet, wie der Versteifungseffekt von Carbon-Nanoröhrchen quantitativ mittels mikromechanischer Verfahren untersucht wurde. Es wurde die effektive Mori-Tanaka-Methode für Praxisanwendungen angewandt, um den effektiven Elastizitätsmodul von Kompositen mit ausgerichteten oder beliebig orientierten geraden Nanoröhrchen zu berechnen. Das Vermischungsgesetz wurde angewandt, um den Elastizitätsmodul der Nanokomposite zu berechnen. Die Ergebnisse der mikromechanischen Verfahren deuten darauf hin, dass die CNTs hochgradig anisotrop sind, und zwar mit einem Elastizitätsmodul, der in der Richtung der Röhrchen zwei Größenordnungen höher ist als senkrecht zu den Röhrchen. Die Ergebnisse der mikromechanischen Verfahren wurden mit solchen, die aus der Mischungsregel resultieren, verglichen und es wurde eine gute Übereinstimmung erreicht, wenn der Effizienzparameter, Φ = 1 betrug und typische Ergebnisse wurden mit Φ = 0,25 erreicht. Um die mechanischen Eigenschaften der Kompositwerkstoffe vorherzusagen, erscheint es angeraten die konventionelle Mischungsregel unter Verwendung eines exakten Wertes für den Effizienzparameter Φ zu berücksichtigen. Um den Elastizitätsmodul von mit SWCNT-verstärkten Nanokompositen vorherzusagen, ist der exakte Wert des Effizienzparameters Φ gleich 0,25, wenn Nanoröhrchen mit Chiralität (8,3) zur Bestimmung des Elastizitätsmoduls der SWCNTs zu Grunde gelegt werden. Demgegenüber ist der Effizienzparameter Φ für Zick-Zack-Ausrichtung und Chiralität (8,0) gleich 1. Die konventionelle Mischungsregel hat sich als nützliches und einfaches Werkzeug im Vergleich zur Mikromechanik erwiesen.


§Correspondence Address Prof. Dr. Hassan Hedia, Professor of Mechanical Engineering, Consultant of the University Vice President, Vice President Office, King Abdulaziz University, B.O. Box 80200 – Jeddah 21589, Kingdom of Saudia Arabia, E-mail:

Prof. Dr. Hassan S. Hedia is Professor of Materials and Solid Mechanics. He is working at King Abdulaziz University (KAU), Saudi Arabia. He was born in Egypt in 1959. He achieved his BSc in the Mechanical Engineering Department at Cairo University, Egypt, in 1981 and his MSc in Production Engineering at Mansoura University, Egypt in 1989. In 1996, he achieved his PhD in the Mechanical Engineering Department, Leeds University, UK and Mansoura University, Egypt. His fields of interest include advanced materials, fracture mechanics, stress analysis and biomechanics.

Dr. Saad. M. Aldousari is Assistant Professor at King Abdulaziz University, Kingdon of Saudi Arabia (KSA). He was born in KSA in 1956. In 1980, he achieved his BSc in the Mechanical Engineering Department, College of Engineering, King Abdulaziz University, KSA. In 1993, he achieved his PhD and MSc from Bradford University, United Kingdom. His field of interest is manufacturing technology.

Prof. Ahmed K. Abdellatif is Professor of Machine Design, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia. He was born in Egypt in 1939. He achieved his PhD at UMIST, Manchester, UK in 1967, his MSc at UMIST, Manchester, UK, in 1965 and his BSc in the Mechanical Engineering Department, Cairo University, Egypt, in 1962. His research fields include fatigue and fracture mechanics, stress analysis of bolted and welded joints and residual stresses.

Dr. Gamal S. Abdelhaffez is Associate Professor at King Abdulaziz University, Jeddah, Saudi Arabia. He was born in Egypt in 1967. In 1990, he achieved his BSc at the Mining Engineering Department, Assuit University, Egypt. In 1999, he achieved his MSc in Mining Engineering at Alazhar University, Egypt and in 2005 his PhD in Mining Engineering at Assuit University, Egypt. His field of interest includes mineral processing, rock grinding operation and environmental impact of the mining industries.


References

1 S.Iijima: Helical microtubules of graphitic carbon, Nature354 (1991), pp. 565810.1038/354056a0Suche in Google Scholar

2 E. T.Thostenson, Z.Ren, T. W.Chou: Advances in the science and technology of carbon nanotubes and their composites, Composites Science and Technology61 (2001), No. 13, pp. 1899191210.1016/S0266-3538(01)00094-XSuche in Google Scholar

3 K. I.Tserpes, P.Papanikos, G.Labeas, S. G.Pantelakis: Multi-scale modeling of tensile behavior of carbon nanotube-reinforced composites, Theoretical and Applied Fracture Mechanics49 (2008), pp. 516010.1016/j.tafmec.2007.10.004Suche in Google Scholar

4 E.Mohammadpour, M.Awang: Nonlinear finite element modeling of graphene and single- and multi-walled carbon nanotubes under axial tension, Applied Physics A106 (2012), pp. 58158810.1007/s00339-011-6625-4Suche in Google Scholar

5 A. A.Mamedv, N. A.Kotov, M.Prato, D. M.Guldi, J. P.Wicksted, A.Hirsch: Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites, Nature Materials1 (2002), No. 3, pp. 19019410.1038/nmat747Suche in Google Scholar

6 R. S.Ruoff, D.Qian, W. K.Liu: Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, Comptes Redus Physique4 (2003), pp. 993100810.1016/j.crhy.2003.08.001Suche in Google Scholar

7 Q.Lu, B.Bhattacharya: The role of atomistic simulations in probing the small scale aspect of fracture – A case study on a single walled carbon nanotube, Engineering Fracture Mechanics72 (2005), pp. 2031207110.1016/j.engfracmech.2005.01.009Suche in Google Scholar

8 T.Belytschko: Atomistic simulations of nanotube fracture, Physical Review B65 (2002), pp. 1810.1103/PhysRevB.65.235430Suche in Google Scholar

9 T.Natsuki, K.Tantrakan, M.Endo: Effects of carbon nanotube structures on mechanical properties, Applied Physics A24 (2004), pp. 7911710.1007/s00339-003-2492-ySuche in Google Scholar

10 T.Chang, H.Gao: Size dependent elastic properties of a single carbon nanotube via molecular mechanics, Journal of the Mechanics and Physics of Solids51 (2003), pp. 1059107410.1016/S0022-5096(03)00006-1Suche in Google Scholar

11 J. R.Xiao, B. A.Gama, Jr., J. W.Gillespie: An analytical molecular structural mechanics model for the mechanical properties of CNT, International Journal of Solids and Structures42 (2005), pp. 3075309210.1016/j.ijsolstr.2004.10.031Suche in Google Scholar

12 C.Li, T. W.Chou: A structural mechanics approach for the analysis of carbon nanotubes, International Journal of Solids and Structures40 (2003), pp. 2487249910.1016/S0020-7683(03)00056-8Suche in Google Scholar

13 X.Sun, W.Zhao: Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach, Materials Science and Engineering: A390 (2005), pp. 3663710.1016/j.msea.2004.08.020Suche in Google Scholar

14 L.Nasdala, G.Ernst: Development of a 4 node finite element for the computation of nanostructured materials, Computational Materials Science33 (2005), pp. 44345810.1016/j.commatsci.2004.09.047Suche in Google Scholar

15 M.Sammalkorpi, A.Krasheninnikov, A.Kuronen, K.Nordlund, K.Kaski: Mechanical properties of carbon nanotubes with vacancies and related defects, Physical Review B70 (2004), pp. 245416.1810.1103/PhysRevB.70.245416Suche in Google Scholar

16 M.Rossi, M.Michele: On the estimation of mechanical properties of single-walled carbon nanotubes by using a molecular-mechanics based FE approach, Composites Science and Technology69 (2009), pp. 1394139810.1016/j.compscitech.2008.09.010Suche in Google Scholar

17 M.Ostoja-Starzewski: Material spatial randomness: From statistical to representative volume element, Probabilistic Engineering Mechanics21 (2006), pp. 11213210.1016/j.probengmech.2005.07.007Suche in Google Scholar

18 R.Hill: Elastic properties of reinforced solids: Some theoretical principles, Journal of Mechanics and Physics of Solids11 (1963), No. 5, pp. 35737210.1016/0022-5096(63)90036-XSuche in Google Scholar

19 J. H.Panchal, S. R.Kalidindi, D. L.McDowell: Key computational modeling issues in integrated computational materials engineering, Journal of Computer-Aided Design45 (2013), No. 1, pp. 42510.1016/j.cad.2012.06.006Suche in Google Scholar

20 S.Nemat-Nasser, M.Hori: Micromechanics: Overall Properties of Heterogeneous Materials, North-Holland, New York, USA (1993)21Suche in Google Scholar

21 T.Mori, K.Tanaka: Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica21 (1973), No. 5, pp. 57157410.1016/0001-6160(73)90064-322Suche in Google Scholar

22 T.Mura: Micromechanics of Defects in Solids, Kluwer Academic Publishers, Dordrecht, The Netherlands (1987)10.1007/978-94-009-3489-4Suche in Google Scholar

23 R.Hill: A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids13 (1965), No. 4, pp. 21322210.1016/0022-5096(65)90010-4Suche in Google Scholar

24 H. S.Hedia, S. M.Aldosari, A. K.Abdellatif, G. S.Abdelhafez: Estimation of the mechanical properties of nanocomposites based on the properties prediction of single wall carbon nanotubes (SWCNT), Materials Testing57 (2015), No. 5, pp. 44745710.3139/120.110730Suche in Google Scholar

25 R.Andrews, D.Jacques, M.Minot, T.Rantell: Fabrication of carbon multiwall nanotube/polymer composites by shear mixing, Macromolecular Materials and Engineering287 (2002), No. 6, pp. 39540310.1002/1439Suche in Google Scholar

26 C. W.Fan, J.-H.Huang, C.Hwu, Y. Y.Liu: A finite element approach for estimation of Young's modulus of single-walled carbon nanotubes, Proc. of the Third Taiwan-Japan Workshop on Mechanical and Aerospace Engineering, Hualian, Taiwan (2005), pp. 111Suche in Google Scholar

27 C.Filiou, C.Galiotis, D. N.Batchelder: Residual stress distribution in carbon-fiber thermoplastic matrix preimpregnated composite tapes, Composites23 (1992), No. 1, pp. 283810.1016/0010-4361(92)90283-ZSuche in Google Scholar

28 G. K.Dassios, S.Musso, C.Galiotis: Compressive behavior of MWCNT/epoxy composite materials, Composites Science and Technology72 (2012), pp. 1027103310.1016/j.compscitech.2012.03.016Suche in Google Scholar

29 V.Datsyuk, M.Kalyva, K.Papagelis, J.Parthenios, D.Tasis, A.Siokou, I.Kallitsis, C.Galiotis: Chemical oxidation of multi-walled carbon nanotubes, Carbon46 (2008), No. 6, pp. 83384010.1016/j.carbon.2008.02.012Suche in Google Scholar

Published Online: 2015-07-03
Published in Print: 2015-07-15

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 20.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.110754/html
Button zum nach oben scrollen