Home Friction stir spot welding of aluminum alloys: A recent review
Article
Licensed
Unlicensed Requires Authentication

Friction stir spot welding of aluminum alloys: A recent review

  • Olatunji Oladimeji Ojo , Emel Taban and Erdinc Kaluc
Published/Copyright: July 3, 2015
Become an author with De Gruyter Brill

Abstract

The application prospect of aluminum alloys in aerospace, high speed train manufacturing, shipbuilding and automotive industries is increasing and friction stir spot welding (FSSW) is adjudged to be a non-fusion and suitable joining technology for it. Conversely, friction stir spot welding has challenging attributes such as objectionable FSSW tool pin performance and short life span in mass production stage, creation of crack initiation sites like hook defect, material flow voids and probe hole, as well as restrictions on thickness of materials that can be welded. These challenges have caused a lot of tool profile innovative modifications and technological advancement in friction stir spot welding of aluminum alloys. Nevertheless, some of these vital issues are still unresolved and this notion makes FSSW an evolving solid state joining technology. A succinct view of literature on FSSW of aluminum alloys reveals that most researchers have limited their research to the characterization of microstructure and mechanical properties of aluminum welds; thus leaving a blatant research gap in post-weld tool examinations. Tool wear mechanism and void formation mechanism in FSSW processes as well as characterization of friction stir spot welded aluminum alloys are research areas that need critical examinations. Nevertheless, this publication combines the innovative and recently developed friction stir spot welding technologies of aluminum alloys and assesses their generalized process parameters; it also covers microstructural and mechanical properties of aluminum alloys available in literature. This report classifies FSSW of aluminum alloys based on three criteria namely, probe amendment, shoulder adjustment and complexity of tool movement.

Kurzfassung

Das Interesse an Aluminiumlegierungen in der Luft- und Raumfahrt für Hochgeschwindigkeitszüge, im Schiffbau und in der Automobilindustrie wächst. Das Reibpunktschweißen (FSSW) erweist sich als geeignete Nichtschmelz-Fügetechnologie. Umgekehrt zeigt das Reibpunktschweißen ungenügende Performance des FSSW-Werkzeugpins und eine kurze Lebensdauer in der Serienreife, Positionen für Rissinitiierung, wie Hakendefekt, Werkstoffhohlräume, Pinloch und Einschränkungen hinsichtlich der schweißbaren Materialdicke. Diese Herausforderungen haben viele innovative Veränderungen des Werkzeugprofils und den technologischen Fortschritt des Reibpunktschweißens von Aluminiumlegierungen bewirkt. Dennoch sind einige dieser wichtigen Fragen weiterhin ungelöst und macht das FSSW zu einer sich weiterentwickelnden Festkörperverbindungstechnik. Ein kurzer Literaturüberblick zum FSSW von Aluminiumlegierungen zeigt, dass die meisten Forscher ihre Untersuchungsgrenzen auf die Charakterisierung von Mikrostruktur und die mechanischen Eigenschaften von Aluminiumschweißungen beschränken. Dies führt zu einer offensichtlichen Untersuchungslücke des Werkzeuges nach dem Schweißen. Werkzeugverschleißmechanismen und Hohlraumbildungsmechanismen für FSSW-Prozesse sowie die Charakterisierung von reibpunktgeschweißten Aluminiumlegierungen sind Forschungsbereiche, die eingehende Untersuchungen benötigen. Diese Veröffentlichung verbindet die innovativen und kürzlich entwickelten Technologien des Reibpunktschweißens von Aluminiumlegierungen und bewertet die allgemeinen Prozessparameter; sie umfasst auch die in der Literatur bekannten mikrostrukturellen und mechanischen Eigenschaften von Aluminiumlegierungen. Dieser Bericht klassifiziert das FSSW von Aluminiumlegierungen auf Basis dreier Kriterien, wie Pinänderung, Schulteranpassung und Komplexität der Werkzeugbewegung.


§Correspondence Address Dr. Emel Taban, Kocaeli University, Engineering Faculty, Dept. of Mechanical Engineering, 41380, Kocaeli, Izmit, Turkey, E-mail:

Olatunji Oladimeji Ojo, born in 1983, has worked as a research assistant from 2010–2012 and presently holds the position of Assistant Lecturer at The Federal University of Technology Akure, Ondo State, Nigeria. He obtained his BS in Mechanical Engineering and MSc in Production Engineering option from the school of engineering and engineering technology, The Federal University of Technology, Akure, Nigeria in 2008 and 2012, respectively. Currently, he is a PhD student in the Department of Mechanical Engineering, Kocaeli University, Turkey under the supervision of Assoc. Prof. Dr. Emel Taban. His current research interest covers welding engineering technologies and material characterizations.

Dr. Emel Taban, born in 1980, received her BS, MSc and PhD in Mechanical Engineering in 2002, 2004 and 2007, respectively. She has been working as Associate Professor in the Department of Mechanical Engineering of Kocaeli University, Turkey and is the Vice Director of the Welding Research Center since 2012. Her major interests and expertise include welding and weldability of stainless steels, high alloyed steels and aluminum alloys using conventional and advanced welding processes.

Prof. Erdinc Kaluc, born in 1958, received his BS, MSc and PhD in Mechanical Engineering in 1980, 1982 and 1988, respectively. He has 30 years of experience in welding metallurgy and welding of stainless steels, HSLA steels and aluminum alloys. He has been working as Professor in the Department of Mechanical Engineering of the University of Kocaeli, Turkey and serves as Director of the Welding Research Center.


References

1 R. S.Mishra, P. S.De, N.Kumar: Friction Stir Welding and Processing, Science and Engineering, Springer Link, 201410.1007/978-3-319-07043-8Search in Google Scholar

2 Siemens: The engineering challenge of developing lighter, fuel-efficient automobiles, a white paper, Siemens PLM Software, URL: www.siemens.com/plmSearch in Google Scholar

3 G.Cam, S.Mistikoglu: Recent developments in friction stir welding of Al alloys, Journal of Materials Engineering and Performance23 (6) (2014), pp. 1936195310.1007/s11665-014-0968-xSearch in Google Scholar

4 G.Mathers: The welding of aluminum and its alloys, Woodhead Publishing Limited, (2002), ISBN 1 85573 567 9, pp. 131, 150154, 16116510.1533/9781855737631Search in Google Scholar

5 G.Ipekoğlu, G.Çam: Effects of initial temper condition and postweld heat treatment on the properties of dissimilar friction stir welded joints between AA7075 and AA6061 aluminum alloys, Metallurgical and Materials Transactions A, Vol. 45A (2014), pp. 3074308710.1007/s11661-014-2248-7Search in Google Scholar

6 G.Ipekoğlu, S.Erim, G.Çam: Investigation of the infiuence of post-weld heat treatment on the friction stir welded AA6061 Al alloy plates with different temper conditions, Metallurgical and Materials Transactions A, Vol. 45A (2014), pp. 86487710.1007/s11661-013-2026-ySearch in Google Scholar

7 T.Udomphol (2007): Aluminum and its alloys, Lecture 2 by Tapany Udomphol, Suranaree University of TechnologySearch in Google Scholar

8 W.Zhou: Problems in welding of high strength aluminum alloys, Singapore Welding Society Newsletter, September 1999, pp. 16Search in Google Scholar

9 T.Dursun, C.Soutis: Recent developments in advanced aircraft aluminum alloys, Materials and Design56 (2014), pp. 86287110.1016/j.matdes.2013.12.002Search in Google Scholar

10 P. E. CraigWillan: Omega Research Incorporated, Update Newsletter: Volume Five, URL: http://omegaresearchinc.com/, accessed on 10th January, 2015Search in Google Scholar

11 E.Kaluç, E.Taban (2007): Sürtünen eleman ile kaynak (FSW) yöntemi (Friction Stir Welding, Yayın no: mmO/2007/460, ISBN 978-9944-89-437-1, Ankara, TurkeySearch in Google Scholar

12 R.Rai, A.De, H. K. D. H.Bhadeshi, T.DebRoy: Review: Friction stir welding tools, Science and Technology of Welding and Joining, Vol. 16, No. 4 (2011), pp. 32534210.1179/1362171811y.0000000023Search in Google Scholar

13 Y. F.Sun, H.Fujii, N.Tsuji: Microstructure and mechanical properties of spot friction stir welded ultrafine grained 1050 Al and conventional grained 6061-T6 Al alloys, Materials Science & Engineering A585 (2013), pp. 172410.1016/j.msea.2013.07.030Search in Google Scholar

14 E.Taban, E.Kaluc: Comparison between microstructure characteristics and joint performance of 5086-H32 aluminum alloy welded by MIG, TIG and friction stir welding processes, Kovove Materialy-Metallic Materials, Vol. 45, No. 5 (2007), pp. 241248Search in Google Scholar

15 S.Lathabai, M. J.Painter, G. M. D.Cantin, V. K.Tyagi: Friction spot joining of an extruded Al-Mg-Si alloy, Scripta Materialia55 (2006), pp. 89990210.1016/j.scriptamat.2006.07.046Search in Google Scholar

16 Alcotec: Trouble shooting for aluminum welding URL: http://www.alcotec.com/us/en/education/knowledge/techknowledge/trouble-shooting-for-aluminum-welding.cfm, accessed on 12th March, 2015Search in Google Scholar

17 Z.Ahmad: Aluminum Alloys – New Trends in Fabrication and Applications, Chapter 2, 4, 5, 7, 9, 11, 12, InTech Publishing, ISBN 978-953-51-0861-0 (2012), pp. 514, 85–108, 47–60, 107, 123–124, 159, 172–181, 223–226, 277–278, 301–303 10.5772/3354Search in Google Scholar

18 EAA: Aluminum Automotive Manual – Joining – 7. Solid state welding, URL: http://www.alueurope.eu/, accessed on 12th February, 2015Search in Google Scholar

19 E.Taban, E.Kaluc: Microstructural and mechanical properties of double-sided MIG, TIG and friction stir welded 5083-H321 aluminum alloy, Kovove Materialy-Metallic Materials, Vol. 44, Issue 1 (2006), pp. 2533Search in Google Scholar

20 J.Wang, J.Su, R. S.Mishra, R.Xu, J. A.Baumann: Tool wear mechanisms in friction stir welding of Ti-6Al-4V alloy, Wear321 (2014), pp. 253210.1016/j.wear.2014.09.010Search in Google Scholar

21 S.Hirasawa, H.Badarinarayan, K.Okamoto, T.Tomimura, T.Kawanami: Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method, Journal of Materials Processing Technology, Vol. 210 (2010), pp. 1455146310.1016/j.jmatprotec.2010.04.003Search in Google Scholar

22 S.Hassanifard, M.Mohammadpour, H. A.Rashid: A novel method for improving fatigue life of friction stir spot welded joints using localized plasticity, Journal of Materials and Design Vol. 53 (2014), pp. 96297110.1016/j.matdes.2013.07.098Search in Google Scholar

23 D. E. J.Talbot: The Effects of Hydrogen in Aluminum and its Alloys, Maney Publishing for the Institute of Materials, Minerals and Mining, ISBN 1-902653-73-4 (2004), pp. 1119, 21–24Search in Google Scholar

24 A. A. M.da Silva, E.Arruti, G.Janeiro, E.Aldanondo, P.Alvarez, A.Echeverria: Material flow and mechanical behaviour of dissimilar AA2024-T3 and AA7075-T6 aluminum alloys friction stir welds, Materials and Design32 (2011), pp. 2021202710.1016/j.matdes.2010.11.059Search in Google Scholar

25 I.Dinaharan, N.Murugan: Automation of friction stir welding process to join aluminum matrix composites by optimization, Procedia Engineering38 (2012), pp. 10511010.1016/j.proeng.2012.06.015Search in Google Scholar

26 V. K.Patel, S. D.Bhole, D. L.Chen, D. R.Ni, B. L.Xiao, Z. Y.Ma: Solid-state ultrasonic spot welding of SiCp/2009Al composite sheets, Materials & Design65 (2015), pp. 48949510.1016/j.matdes.2014.09.049Search in Google Scholar

27 Y. E.Ma, Z. C.Xia, R. R.Jiang, W. Y.Li: Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum–lithium alloy joints, Engineering Fracture Mechanics114 (2013), pp. 11110.1016/j.engfracmech.2013.10.010Search in Google Scholar

28 D.Trimble, G. E.O'Donnell, J.Monagha: Characterisation of tool shape and rotational speed for increased speed during friction stir welding of AA2024-T3, Journal of Manufacturing Processes17 (2015), pp. 14115010.1016/j.jmapro.2014.08.007Search in Google Scholar

29 S.Babu, G. D.Janaki Ram, P. V.Venkitakrishnan, G. MadhusudhanReddy, K. PrasadRao: Microstructure and mechanical properties of friction stir lap welded aluminum alloy AA2014, Journal of Materials Science & Technology25 (5) (2012), pp. 41442610.1016/s1005-0302(12)60077-2Search in Google Scholar

30 A.Sullivan, J. D.Robson: Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminum alloy thick plate, Materials Science and Engineering: A Vol. 478, Issue 1–2 (2008), pp. 35136010.1016/j.msea.2007.06.025Search in Google Scholar

31 J. Q.Su, T. W.Nelson, R.Mishra, M.Mahoney: Microstructural investigation of friction stir welded 7050-T651 aluminum, Acta Materialia Vol. 51 (2003), Issue 3, pp. 71372910.1016/s1359-6454(02)00449-4Search in Google Scholar

32 Y.Rostamiyan, A.Seidanloo, H.Sohrabpoor, R.Teimouri: Experimental studies on ultrasonically assisted friction stir spot welding of AA6061, Archives of Civil and Mechanical Engineering, Vol. 15, Issue 2 (2015), pp. 33534610.1016/j.acme.2014.06.005Search in Google Scholar

33 S. J.Kalita: Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024-T351, Applied Surface Science, Vol. 257, Issue 9 (2011), pp. 3985399710.1016/j.apsusc.2010.11.163Search in Google Scholar

34 W.-S.Chang, S. R.Rajesh, C.-K.Chun, H.-J.Kim: Microstructure and Mechanical Properties of Hybrid Laser Friction Stir Welding Between AA6061-T6 Al Alloy and AZ31 Mg Alloy, Journal of Materials Science & Technology, Vol. 27, Issue 3 (2011), pp. 19920410.1016/s1005-0302(11)60049-2Search in Google Scholar

35 J.Metson: Fundamentals of Aluminium Metallurgy, Production, Processing and Applications; edited by R.Lumley, Production of Alumina (2011), pp. 233710.1533/9780857090256Search in Google Scholar

36 G.Davies: Materials for Automobile Bodies, Butterworth-Heinemann, Elsevier, ISBN 0 7506 5692 1 (2003), pp. 8790, 146–157 10.1016/b978-075065692-4/50021-2,10.1016/b978-075065692-4/50022-4Search in Google Scholar

37 J. F.King: The Aluminium Industry, Woodhead Publishing Limited, ISBN 978-1-85573-151-6 (2001), pp. 1510.1016/b978-1-85573-151-6.50008-2Search in Google Scholar

38 R.Cobden, A.Banbury: Aluminium: Physical Properties, Characteristics and Alloys, Training in Aluminum Application Technologies (TALAT), Basic Level-Lecture 1501, pp. 160Search in Google Scholar

39 C.Vargel: Corrosion of Aluminium, translated by M. P.Schmidt, Elsevier Ltd., ISBN: 0 08 044495 4 (2004), pp. 17510.1016/b978-008044495-6/50007-0Search in Google Scholar

40 J. E.Hatch: Aluminum Properties and Physical Metallurgy, ASM International (1984), pp. 157Search in Google Scholar

41 R.Lumley: Fundamentals of Aluminum Metallurgy – Production, Processing and Applications, Woodhead Publishing Limited, ISBN 978-1-84569-654-2 (2011), pp. 18, 305–308, 630, 633–643 10.1533/9780857090256.1Search in Google Scholar

42 F. M.Mazzolani: Aluminum Structural Design, International Centre For Mechanical Sciences, Courses and Lectures – No. 443, Springer-Verlag, Wien – New York, ISBN 978-3-211-00456-2 (2003), pp. 13010.1007/978-3-7091-2794-0Search in Google Scholar

43 J.Dwight: Aluminum Design and Construction, Taylor & Francis Group, ISBN 0 419 15710 7 (1999), pp. 1839, 77–103 10.4324/9780203028193Search in Google Scholar

44 M. H.Jacobs: Metallurgical Background to Alloy Selection and Specifications for Wrought, Cast and Special Applications, Training in Aluminium Application Technologies (TALAT) Lecture-1255, European Aluminium Association (EAA), (1999), pp. 116Search in Google Scholar

45 T. H.Muster, A. E.Hughes, G. E.Thompson: Copper Distributions in Aluminum Alloys, Nova Science Publishers Inc., New York, ISBN: 978-1-60741-201-4 (2009), pp. 123Search in Google Scholar

46 J.Rowe: Advanced Materials in Automotive Engineering, Woodhead Publishing Limited, ISBN 978-1-84569-561-3 (2012), pp. 61410.1533/9780857095466Search in Google Scholar

47 S.Venukumar, S.Muthukumaran, S. G.Yalagi, S. V.Kailas: Failure modes and fatigue behavior of conventional and refilled friction stir spot welds in AA 6061-T6 sheets, International Journal of Fatigue61 (2014), pp. 9310010.1016/j.ijfatigue.2013.12.009Search in Google Scholar

48 B.Han, Y.Huang, S.Lv, L.Wan, J.Feng, G.Fu: AA7075 bit for repairing AA2219 keyhole by filling friction stir welding, Materials and Design51 (2013), pp. 253310.1016/j.matdes.2013.03.089Search in Google Scholar

49 Z.Shen, X.Yang, Z.Zhang, L.Cui, T.Li: Microstructure and failure mechanisms of refill friction stir spot welded 7075-T6 aluminum alloy joints, Materials and Design44 (2013), pp. 47648610.1016/j.matdes.2012.08.026Search in Google Scholar

50 H.Badarinarayan, Q.Yang, S.Zhu: Effect of tool geometry on static strength of friction stir spot-welded aluminum alloy, International Journal of Machine Tools & Manufacture49 (2009), pp. 14214810.1016/j.ijmachtools.2008.09.004Search in Google Scholar

51 H.Badarinarayan, Y.Shi, X.Li, K.Okamoto: Effect of tool geometry on hook formation and static strength of friction stir spot welded aluminum 5754-O sheets, International Journal of Machine Tools & Manufacture49 (2009), pp. 81482310.1016/j.ijmachtools.2009.06.001Search in Google Scholar

52 M.Chiaberge: New Trends and Developments in Automotive Industry, InTech, ISBN 978-953-307-999-8 (2011), pp. 36537910.5772/1821Search in Google Scholar

53 N.Anyadike: Aluminium – The Challenges Ahead, Woodhead Publishing Limited, ISBN 1 85573 591 1 (2002), pp. 4146, 78–93 10.1016/b978-1-85573-591-0.50005-3,10.1016/b978-1-85573-591-0.50007-7Search in Google Scholar

54 E.Kaluc, E.Taban: Investigation on Mechanical and Microstructural Properties of TIG, MIG and FS Welded 5083–5086 Aluminium Alloys, Schweißen und Schneiden 2005, DVS Annual Welding Conference (2005), pp. 4954Search in Google Scholar

55 Y.Tozaki, Y.Uematsu, K.Tokaji: A newly developed tool without probe for friction stir spot welding and its performance, Journal of Materials Processing Technology210 (2010), pp. 84485110.1016/j.jmatprotec.2010.01.015Search in Google Scholar

56 Y. F.Sun, H.Fujii, N.Takaki, Y.Okitsu: Microstructure and mechanical properties of mild steel joints prepared by a flat friction stir spot welding technique, Materials and Design37 (2012), pp. 38439210.1016/j.matdes.2012.01.027Search in Google Scholar

57 S. H.Chowdhury, D. L.Chen, S. D.Bhole, X.Cao, P.Wanjara: Lap shear strength and fatigue life of friction stir spot welded AZ31 magnesium and 5754 aluminum alloys, Materials Science & Engineering A556 (2012), pp. 50050910.1016/j.msea.2012.07.019Search in Google Scholar

58 Y. F.Sun, H.Fujii, N.Takaki, Y.Okitsu: Microstructure and mechanical properties of dissimilar Al alloy/steel joints prepared by a flat spot friction stir welding technique, Materials and Design, Vol. 47 (2013), pp. 35035710.1016/j.matdes.2012.12.007Search in Google Scholar

59 Y. C.Chen, A.Gholinia, P. B.Prangnell: Interface structure and bonding in abrasion circle friction stir spot welding: A novel approach for rapid welding aluminium alloy to steel automotive sheet, Materials Chemistry and Physics134 (2012), pp. 45946310.1016/j.matchemphys.2012.03.017Search in Google Scholar

60 M.Tutar, H.Aydin, C.Yuce, N.Yavuz, A.Bayram: The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials and Design63 (2014), pp. 78979710.1016/j.matdes.2014.07.003Search in Google Scholar

61 M. P.Mubiayi, E. T.Akinlabi: Friction Stir Spot Welding of Dissimilar Materials: An Overview, Proceedings of the World Congress on Engineering and Computer Science2014, Vol. II, WCECS 2014, ISBN: 978-988-19253-7-4Search in Google Scholar

62 U. F. H.Suhuddin, V.Fischer, J. F.dos Santos: The thermal cycle during the dissimilar friction spot welding of aluminum and magnesium alloy, Scripta Materialia68 (2012), pp. 879010.1016/j.scriptamat.2012.09.008Search in Google Scholar

63 X. W.Yang, T.Fu, W. Y.Li: Friction Stir Spot Welding: A Review on Joint Macro- and Microstructure, Property, and Process Modelling, Advances in Materials Science and Engineering, Vol. 2014, Article ID 697170, (2014), pp. 11110.1155/2014/697170Search in Google Scholar

64 Y.Bozkurt, M. K.Bilici: Application of Taguchi approach to optimize FSSW parameters on joint properties of dissimilar AA2024-T3 and AA5754-H22 aluminum alloys, Materials and Design Vol. 51 (2013), pp. 51352110.1016/j.matdes.2013.04.074Search in Google Scholar

65 L. C.Campanelli, U. F. H.Suhuddin, J. F.dos Santos, N. Guedesde Alcântara: Parameters optimization for friction spot welding of AZ31 magnesium alloy by Taguchi method, Journal Soldagem & Inspeção (S&I), Vol. 17 (2012), No. 1, pp. 263110.1590/S0104-92242012000100005Search in Google Scholar

66 A. P.Gerlich, T.Shibayanagi: Grain boundary sliding during friction stir spot welding of an aluminum alloy, Scripta Materialia60 (2009), pp. 23623910.1016/j.scriptamat.2008.10.006Search in Google Scholar

67 C.-S.Jeon, S.-T.Hong, Y.-J.Kwon, H.-H.Cho, H. N.Han: Material properties of friction stir spot welded joints of dissimilar aluminum alloys, Trans. Nonferrous Met. Soc. China22 (2012), pp. s605S61310.1016/s1003-6326(12)61772-5Search in Google Scholar

68 G.D'Urso: Thermo-mechanical characterization of friction stir spot welded AA6060 sheets: Experimental and FEM analysis, Journal of Manufacturing Processes17 (2015), pp. 10811910.1016/j.jmapro.2014.08.004Search in Google Scholar

69 K. J.Dharmaraj, C. D.Cox, A. M.Strauss, G. E.Cook: Ultrasonic thermometry for friction stir spot welding, Measurement49 (2014), pp. 22623510.1016/j.measurement.2013.11.054Search in Google Scholar

70 M.Cabibbo, A.Forcellese, M.El Mehtedi, M.Simoncini: Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization, Material science and engineering A590 (2014), pp. 20921710.1016/j.msea.2013.10.031Search in Google Scholar

71 P.Lacki, Z.Kucharczyk, R. E.Sliwa, T.Gałaczynski: Effect of tool shape on temperature field in friction stir spot welding, Archive of Metallurgy and Materials, Vol. 58 (2013), Issue 2, pp. 59559910.2478/amm-2013-0043Search in Google Scholar

72 P.Fanelli, F.Vivio, V.Vullo: Experimental and numerical characterization of friction stir spot welded joints, Engineering Fracture Mechanics81 (2012), pp. 172510.1016/j.engfracmech.2011.07.009Search in Google Scholar

73 S. D.Thoppul, R. F.Gibson: Mechanical characterization of spot friction stir welded joints in aluminum alloys by combined experimental/numerical approaches – Part II: Macromechanical studies, Materials Characterization, Vol. 60 (2009), pp. 1352136010.1016/j.matchar.2009.06.004Search in Google Scholar

74 S. D.Thoppul, R. F.Gibson: Mechanical characterization of spot friction stir welded joints in aluminum alloys by combined experimental/numerical approaches – Part I: Micromechanical studies, Materials Characterization, Vol. 60 (2009), pp. 1342135110.1016/j.matchar.2009.06.011Search in Google Scholar

75 W.Yuan, R. S.Mishra, B.Carlson, R.Verma, R. K.Mishra: Material flow and microstructural evolution during friction stir spot welding of AZ31 magnesium alloy, Materials Science and Engineering A543 (2012), pp. 20020910.1016/j.msea.2012.02.075Search in Google Scholar

76 W.Yuan, R. S.Mishra, S.Webba, Y. L.Chen, B.Carlson, D. R.Herling, G. J.Grant: Effect of tool design and process parameters on properties of Al alloy 6016 friction stir spot welds, Journal of Materials Processing Technology, Vol. 211 (2011), pp. 97297710.1016/j.jmatprotec.2010.12.014Search in Google Scholar

77 M. D.Tier, T. S.Rosendo, J. F.dos Santos, N.Huber, J. A.Mazzaferro, C. P.Mazzaferro, T. R.Strohaecker: The influence of refill FSSW parameters on the microstructure and shear strength of 5042 aluminium welds, Journal of Materials Processing Technology213 (2013), pp. 997100510.1016/j.jmatprotec.2012.12.009Search in Google Scholar

78 V. X.Tran, J.Pan, T.Pan: Fatigue behavior of aluminum 5754-O and 6111-T4 spot friction welds in lap-shear specimens, International Journal of Fatigue30 (2008), pp. 2175219010.1016/j.ijfatigue.2008.05.025Search in Google Scholar

79 V. X.Tran, J.Pan, T.Pan: Fatigue behavior of spot friction welds in lap-shear and cross-tension specimens of dissimilar aluminum sheets, International Journal of Fatigue32 (2010), pp. 1022104110.1016/j.ijfatigue.2009.11.009Search in Google Scholar

80 P. C.Lin, J.Pan, T.Pan: Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets – Part 1: Welds made by a concave tool, International Journal of Fatigue30 (2008), pp. 748910.1016/j.ijfatigue.2007.02.016Search in Google Scholar

81 P. C.Lin, J.Pan, T.Pan: Failure modes and fatigue life estimations of spot friction welds in lap-shear specimens of aluminum 6111-T4 sheets – Part 2: Welds made by a flat tool, International Journal of Fatigue30 (2008), pp. 9010510.1016/j.ijfatigue.2007.02.017Search in Google Scholar

82 Z. M.Su, R. Y.He, P. C.Lin, K.Dong: Fatigue analyses for swept friction stir spot welds in lap-shear specimens of alclad 2024-T3 aluminum sheets, International Journal of Fatigue61 (2014), pp. 12914010.1016/j.ijfatigue.2013.11.021Search in Google Scholar

83 Z.Zhang, X.Yang, J.Zhang, G.Zhou, X.Xu, B.Zou: Effect of welding parameters on microstructure and mechanical properties of friction stir spot welded 5052 aluminum alloy, Materials and Design32 (2011), pp. 4461447010.1016/j.matdes.2011.03.058Search in Google Scholar

84 Z.Shen, X.Yang, Z.Zhang, L.Cui, Y.Yin: Mechanical properties and failure mechanisms of friction stir spot welds of AA 6061-T4 sheets, Materials and Design49 (2013), pp. 18119110.1016/j.matdes.2013.01.066Search in Google Scholar

85 H.Liu, Y.Zhao, X.Su, L.Yu, J.Hou: Microstructural characteristics and mechanical properties of friction stir spot welded 2A12-T4 aluminum alloy, Advances in Materials Science and Engineering, Vol. 2013, Article ID 719306, (2013), pp. 11010.1155/2013/719306Search in Google Scholar

86 M.Merzoug, M.Mazari, L.Berrahal, A.Imad: Parametric studies of the process of friction spot stir welding of aluminium 6060-T5 alloys, Materials and Design31 (2010), pp. 3023302810.1016/j.matdes.2009.12.029Search in Google Scholar

87 C.-W.Yang, F.-Y.Hung, T.-S.Lui, L.-H.Chen, J.-Y.Juo: Weibull Statistics for Evaluating Failure Behaviors and Joining Reliability of Friction Stir Spot Welded 5052 Aluminum Alloy, Materials Transactions, Vol. 50, No. 1 (2009), pp. 14515110.2320/matertrans.mra2008341Search in Google Scholar

88 D.-H.Choi, B.-W.Ahn, C.-Y.Lee, Y.-M.Yeon, K.Song, S.-B.Jung: Effect of pin shapes on joint characteristics of friction stir spot welded AA5J32 sheet, Materials Transactions Vol. 51, No. 5 (2010), pp. 1028103210.2320/matertrans.m2009405Search in Google Scholar

89 T.Rosendo, B.Parra, M. A. D.Tier, A. A. M.da Silva, J. F.dos Santos, T. R.Strohaecker, N. G.Alcântara: Mechanical and microstructural investigation of friction spot welded AA6181-T4 aluminium alloy, Materials and Design32 (2011), pp. 1094110010.1016/j.matdes.2010.11.017Search in Google Scholar

90 Mazda Motor Corporation: News Releases, URL: http://www2.mazda.com/en, accessed on 12th March, 2015Search in Google Scholar

91 TWI (The Wwelding Institute), URL: http://www.twi-global.com/technical-knowledge/published-papersSearch in Google Scholar

92 S. T.Amancio-Filho, A. P. C.Camillo, L.Bergmann, J. F.dos Santos, S. E.Kury, N. G. A.Machado: Preliminary investigation of the microstructure and mechanical behaviour of 2024 aluminium alloy friction spot welds, Materials Transactions, Vol. 52, No. 5 (2011), pp. 98599110.2320/matertrans.l-mz201126Search in Google Scholar

93 T.Montag, J.-P.Wulfsberg, H.Hameister, R.Marschner: Influence of Tool Wear on Quality Criteria for Refill Friction Stir Spot Welding (RFSSW) Process, New Production Technologies in Aerospace Industry – 5th Machining Innovations Conference (MIC 2014), Procedia CIRP24 (2014), pp. 10811310.1016/j.procir.2014.08.015Search in Google Scholar

94 The Belgian Welding Institute: Development and evaluation of advanced welding technologies for multi-material design with dissimilar sheet metals, A report of friction stir welding, URL: http://www.bil-ibs.be/en/onderzoeksproject/innojoin-development-and-evaluation-advanced-welding-technologies-multi-material-d, accessed on 24th March, 2015Search in Google Scholar

95 Y.Uematsu, K.Tokaji, Y.Tozaki, T.Kurita, S.Murata: Effect of refilling probe hole on tensile failure and fatigue behaviour of friction stir spot welded joints in Al-Mg-Si alloy, International Journal of Fatigue30 (2008), pp. 1956196610.1016/j.ijfatigue.2008.01.006Search in Google Scholar

96 C. D.Cox, B. T.Gibson, D. R.DeLapp, A. M.Strauss, G. E.Cook: A method for double-sided friction stir spot welding, Journal of Manufacturing Processes, Vol. 16 (2014), pp. 24124710.1016/j.jmapro.2013.10.006Search in Google Scholar

97 R. S.Mishra, M. W.Mahoney: Friction Stir Welding and Processing edited by R. S.Mishra, M. W.Mahoney, Friction Stir Spot Welding by H.Badarinarayan, F.Hunt, K.Okamoto, ASM International (2007), pp. 23527010.4271/2007-01-1699Search in Google Scholar

98 W.Li, I.Li, Z.Zhang, D.Gao, W.Wang, C.Dong: Improving mechanical properties of pinless friction stir spot welded joints by eliminating hook defect, Materials and Design, Vol. 62 (2014), pp. 24725410.1016/j.matdes.2014.05.028Search in Google Scholar

99 B.Kuang, Y.Shen, W.Chen, X.Yao, H.Xu, J.Gao, J.Zhang: The dissimilar friction stir lap welding of 1A99 Al to pure Cu using Zn as filler metal with “pinless” tool configuration, Materials and Design, Vol. 68 (2015), pp. 546210.1016/j.matdes.2014.12.008Search in Google Scholar

100 Y.-C.Chiou, C.-T.Liu, R.-T.Lee: A pinless embedded tool used in FSSW and FSW of aluminum alloy, Journal of Materials Processing Technology, Vol. 213 (2013), pp. 1818182410.1016/j.jmatprotec.2013.04.018Search in Google Scholar

101 W. M.Thomas, K. I.Johnson, C. S.Wiesner: Friction stir welding – Recent developments in tool and process technologies, Advanced Engineering Materials, Volume 5, Issue 7 (2003), pp. 48549010.1002/adem.200300355Search in Google Scholar

102 W. M.Thomas, E. D.Nicholas, S. D.Smith: Friction stir welding – Tool developments, Aluminum Joining Symposium, TMS Annual Meeting 2001, 11–15 February 2001, New Orleans, Louisiana, USA, URL: http://www.twi-global.com/technical-knowledge/published-papers/friction-stir-welding-tool-developments-february-2001/, accessed 20th March, 2015Search in Google Scholar

103 D.-A.Wanga, C.-W.Chao, P.-C.Lin, J.-Y.Uan: Mechanical characterization of friction stir spot microwelds, Journal of Materials Processing Technology210 (2010), pp. 1942194810.1016/j.jmatprotec.2010.07.005Search in Google Scholar

104 S.Bozzi, A. L.Helbert-Etter, T.Baudin, V.Klosek, J. G.Kerbiguet, B.Criqui: Influence of FSSW parameters on fracture mechanisms of 5182 aluminium welds, Journal of Materials Processing Technology210 (2010), pp. 1429143510.1016/j.jmatprotec.2010.03.022Search in Google Scholar

105 Y. C.Chen, S. F.Liu, D.Bakavos, P. B.Prangnell: The effect of a paint bake treatment on joint performance in friction stir spot welding AA6111-T4 sheet using a pinless tool, Materials Chemistry and Physics, Vol. 141 (2013), pp. 76877510.1016/j.matchemphys.2013.05.073Search in Google Scholar

106 D.Mitlin, V.Radmilovic, T.Panc, J.Chena, Z.Feng, M. L.Santella: Structure–properties relations in spot friction welded (also known as friction stir spot welded) 6111 aluminum, Materials Science and Engineering A441 (2006), pp. 799610.1016/j.msea.2006.06.126Search in Google Scholar

107 Q.Yang, S.Mironov, Y. S.Sato, K.Okamoto: Material flow during friction stir spot welding, Materials Science and Engineering A527 (2010), pp. 4389439810.1016/j.msea.2010.03.082Search in Google Scholar

108 C.Blignault, S. W.Kallee, W. M.Thomas, M. J.Russell: Friction stir weld integrity and its importance to the rolling stock industry, Southern African Institute of Welding (SAIW) Conference, Integrity of Welded Structures in the Energy, Processing and Transport Industries in Southern Africa, Gold Reef City, 28–29 May 2008, Technical knowledge on TWISearch in Google Scholar

109 C. D.Cox, B. T.Gibson, A. M.Strauss, G. E.Cook: Energy input during friction stir spot welding, Journal of Manufacturing Processes4 (2014), Vol. 16, pp. 47948410.1016/j.jmapro.2014.05.007Search in Google Scholar

110 S. W.Kallee, C.Blignault: Friction stir welding for the fabrication of aluminium rolling stock, European Railway Review, Issue3 (2008)Search in Google Scholar

Published Online: 2015-07-03
Published in Print: 2015-07-15

© 2015, Carl Hanser Verlag, München

Downloaded on 2.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110752/html
Scroll to top button