Startseite Technik Evaluation of double channel GMAW fillet welds of low carbon steel using solid wire
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Evaluation of double channel GMAW fillet welds of low carbon steel using solid wire

  • Tolga Mert , Nurullah Gultekin und Ahmet Karaaslan
Veröffentlicht/Copyright: 3. Juli 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

S235JR low carbon steel material with web and flange thicknesses of 8 mm was welded by conventional GMAW and double channel shielding gas method to form double fillet T-joints. The differences between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, molten and HAZ areas of the joints and thermal camera temperature measurements. According to the results, lower mean arc voltage along with lower heat input was obtained using double channel shielding gas method. Vickers hardness values were higher using conventional GMAW. Moreover, mean filler metal molten area values were higher using double channel shielding gas method, which depicted that this method increased productivity. Smaller HAZ area values acquired with double channel shielding gas method is an indication of more intense heat input.

Kurzfassung

Es wurde ein Kohlenstoffstahl des Typs 235JR mit einer Steg- und Flankendicke von 8 mm mittels konventionellem Schutzgasverfahren sowie mit dem Doppelkanal-MAG-Verfahren geschweißt, um beidseitige Kehlnahtschweißungen herzustellen. Der Unterschied zwischen den beiden Verfahren wurde durch Messung der Hauptschweißparameter, der Vickershärteprofile, der Flächen der aufgeschmolzenen sowie der Wärmeeinflusszonen und Temperaturmessungen mit einer Thermokamera charakterisiert. Entsprechend der Ergebnisse, stellt sich eine geringere durchschnittliche Schweißspannung und somit eine geringere Streckenenergie beim Doppelkanalschweißen ein. Die Vickershärtewerte waren höher als die der konventionellen Schutzgasschweißungen. Darüber hinaus waren auch die aufgeschmolzenen Zonen beim Doppelkanal-Schutzgasschweißen größer, was darauf hindeutet, dass dieses Verfahren die Produktivität beim Schweißen steigert. Die kleinere Fläche der Wärmeeinflusszone bei dem Doppelkanal-Schutzgasschweißen ist ein Hinweis auf einen intensiveren Wärmeeintrag.


§Correspondence Address Dr. Tolga Mert, Research and Teaching Assistant, Materials Science & Manufacturing Technologies Div., Mechanical Engineering Dept, E3 Block, Room E3-20, Yildiz Technical University, 34349 Yildiz-Besiktas, Istanbul, Turkey, E-mail: ,

Dr. Tolga Mert, born in 1978, studied Mechanical Engineering at Istanbul University, Turkey, from 1996 to 2000. After graduation, he pursued his Master of Science education in the Mechanical Engineering Department, Materials Science and Manufacturing Technology Division, Yildiz Technical University, Istanbul, Turkey from 2001 to 2004. He has continued his career with doctorate education at the same department since 2005. He was awarded a Fulbright PhD Thesis Research Grant and he pursued research on welding distortions at the Ohio State University, Edison Joining Technology Center, USA under the supervision of Prof. Dr. Chon L. Tsai from 2007 to 2008. Then, he earned his PhD degree in 2012. He has been working in the Mechanical Engineering Department, Materials Science and Manufacturing Technology Division, Yildiz Technical University in Istanbul, Turkey as a research assistant since 2001.

Emeritus Prof. Nurullah Gultekin, born in 1943, graduated from Istanbul Technical College, Turkey as Mechanical Engineer in 1968. He has continued his Master of Science studies in the Mechanical Engineer Department at Yildiz University, Istanbul, Turkey and graduated in 1970. He was at the Schweisstechnische Lehr- und Versuchsanstalt, Mannheim, Germany for his experimental studies for his associate professorship adequacy thesis from 1976 to 1978 and earned his degree in 1979. He was promoted to full professorship in 1988. He retired in 2008 and since then he has been giving lectures for undergraduate and graduate students in the Mechanical Engineering Department, Materials Science and Manufacturing Technology Division at Yildiz Technical University in Istanbu, Turkeyl.

Prof. Dr. Dipl.-Ing. Mont. Ahmet Karaaslan, born in 1968, studied Metallurgy and Materials Engineering at Yildiz Technical University, Istanbul, Turkey, from 1986 to 1990 and received his doctoral degree from the Institute for Metals Science and Materials Testing, Montan University in Loeben, Austria, in 1999. Since 1999, he has been working in the Materials Engineering Department at Yildiz Technical University, Istanbul, Turkey.


References

1 D.Li, S.Lu, D.Li, Y.Li: Principles giving high penetration under the double shielded TIG process, Journal of Materials Science and Technology30 (2014), No. 2, pp. 17217810.1016/j.jmst.2013.09.002Suche in Google Scholar

2 D.Li, S.Lu, D.Li, Y.Li: Effect of structural parameters of double shielded TIG torch on the fusion zone profile for 0Cr13Ni5Mo martensitic steel, Journal of Materials Science & Technology30 (2014), No. 9, pp. 92292710.1016/j.jmst.2013.12.012Suche in Google Scholar

3 D.Li, S.Lu, W.Dong, D.Li, Y.Li: Study of the law between the weld pool shape variations with the welding parameters under two TIG processes, Journal of Materials Processing Technology212 (2012), pp. 12813610.1016/j.jmatprotec.2011.08.015Suche in Google Scholar

4 D.Li, S.Lu, D.Li, Y.Li: Weld pool shape variations and electrode protection in double shielded TIG welding, Advanced Materials Research97–101 (2010), pp. 3978398110.4028/www.scientific.net/AMR.97-101.3978Suche in Google Scholar

5 I.Masumoto, M.Kutsuna, M.Abraham: Metal transfer and spatter loss in double gas shielded metal arc welding – Study on double gas shielded metal arc welding (Report 1), Transactions of Japan Welding Society19 (1988), No. 2, pp. 3844Suche in Google Scholar

6 M.Kutsuna, M.Abraham: Metal transfer and spatter loss in double gas shielded metal arc welding using flux-cored wire – Study on double gas shielded metal arc welding (Report 2), Transactions of Japan Welding Society20 (1989), No. 1, pp. 4551Suche in Google Scholar

7 M.Kutsuna, M.Abraham, Y.Kotani, K.Yamawaki, D.Hayashi: Development of D-MAG process using Ar-He, Ar-He-O2 or Ar-O2 as an inner shielding gas, IIW Doc. No. XII-1485-97 (1997), pp. 6570Suche in Google Scholar

8 R.Killing: Gas-shielded metal-arc welding of aluminum with two separate concentric flows of shielding gas, Welding and Cutting36 (1984), No. 9, pp. E148E150Suche in Google Scholar

9 D.Böhme, H.Heuser: Gas-shielded metal-arc welding with two separately fed shielding gases – Flow behaviour and influence of the argon proportion on the penetration conditions, Welding and Cutting40 (1988), No. 2, pp. E25E28Suche in Google Scholar

10 J. H.Dennis, M. J.French, O. J.Hewitt, S. B.Mortazavi, C. A. J.Redding: Control of exposure to hexavalent chromium and ozone in gas metal arc welding of stainless steels by use of a secondary shield gas, The Annals of Occupational Hygiene46 (2002), No. 1, pp. 434810.1093/annhyg/mef019Suche in Google Scholar PubMed

11 T.Mert, N.Gultekin, A.Karaaslan: Fillet welding of austenitic stainless steel using double channel shielding gas method with cored wire, Materials Testing57 (2015), No. 1, pp. 919410.3139/120.110682Suche in Google Scholar

12 ISO/TR 16060: Destructive tests on welds in metallic materials, Etchants for macroscopic and microscopic examination, International Organization for Standardization, Geneva (2003)Suche in Google Scholar

Published Online: 2015-07-03
Published in Print: 2015-07-15

© 2015, Carl Hanser Verlag, München

Heruntergeladen am 20.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.110765/html
Button zum nach oben scrollen