Startseite ZnO nanoparticles in the synthesis of AB ring core of camptothecin
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

ZnO nanoparticles in the synthesis of AB ring core of camptothecin

  • Selvaraj Roopan EMAIL logo und Fazlur Nawaz Khan
Veröffentlicht/Copyright: 23. September 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For the first time, synthesis of AB ring core of camptothecin synthons such as (2-chloroquinolin-3-yl)methanols (Va-Vg) using zinc oxide nanoparticles is reported. The desired attractive products were obtained in high yields, short reaction time, using a simple work-up procedure with the purification of products by non-chromatographic methods.

[1] Alonso, F., Riente, P., & Yus, M. (2008). Hydrogen-transfer reduction of carbonyl compounds catalysed by nickel nanoparticles. Tetrahedron Letters, 49, 1939–1942. DOI: 10.1016/j.tetlet.2008.01.097. http://dx.doi.org/10.1016/j.tetlet.2008.01.09710.1016/j.tetlet.2008.01.097Suche in Google Scholar

[2] Chaicharoenwimolkul, L., Munmai, A., Chairam, S., Tewasekson, U., Sapudom, S., Lakliang, Y., & Somsook, E. (2008). Effect of stabilizing ligands bearing ferrocene moieties on the gold nanoparticle-catalyzed reactions of arylboronic acids. Tetrahedron Letters, 49, 7299–7302. DOI: 10.1016/j.tetlet.2008.10.040. http://dx.doi.org/10.1016/j.tetlet.2008.10.04010.1016/j.tetlet.2008.10.040Suche in Google Scholar

[3] Comins, D. L., Hong, H., & Jianhua, G. (1994). Asymmetric synthesis of camptothecin alkaloids: A nine-step synthesis of (S)-camptothecin. Tetrahedron Letters, 35, 5331–5334. DOI: 10.1016/S0040-4039(00)73492-7. http://dx.doi.org/10.1016/S0040-4039(00)73492-710.1016/S0040-4039(00)73492-7Suche in Google Scholar

[4] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010). 2-Chloro-3-hydroxymethyl-7,8-dimethylquinoline. Acta Crystallographica Section E, E66, o200. DOI: 10.1107/S160053680905404X. http://dx.doi.org/10.1107/S160053680905404X10.1107/S160053680905404XSuche in Google Scholar PubMed PubMed Central

[5] Khan, F. N., Roopan, S. M., Hathwar, V. R., & Ng, S. W. (2010b). 2-Chloro-3-hydroxymethyl-6-methoxyquinoline. Acta Crystallographica Section E, E66, o201. DOI: 10.1107/S1600536809054051. http://dx.doi.org/10.1107/S160053680905405110.1107/S1600536809054051Suche in Google Scholar PubMed PubMed Central

[6] Kidwai, M., Mishra, N. K., Bansal, V., Kumar, A., & Mozumdar, S. (2009). Novel one-pot Cu-nanoparticles-catalyzed Mannich reaction. Tetrahedron Letters, 50, 1355–1358. DOI: 10.1016/j.tetlet.2009.01.031. http://dx.doi.org/10.1016/j.tetlet.2009.01.03110.1016/j.tetlet.2009.01.031Suche in Google Scholar

[7] Kim, Y. J., & Varma, R. S. (2004). Microwave-assisted preparation of cyclic ureas from diamines in the presence of ZnO. Tetrahedron Letters, 45, 7205–7208. DOI: 10.1016/j.tetlet.2004.08.042. http://dx.doi.org/10.1016/j.tetlet.2004.08.04210.1016/j.tetlet.2004.08.042Suche in Google Scholar

[8] Maghsoodlou, M. T, Hassankhani, A., Shaterian, H. R., Habibi-Khorasani, S. M., & Mosaddegh, E. (2007). Zinc oxide as an economical and efficient catalyst for the one-pot preparation of β-acetamido ketones via a four-component condensation reaction. Tetrahedron Letters, 48, 1729–1734. DOI: 10.1016/j.tetlet.2007.01.060. http://dx.doi.org/10.1016/j.tetlet.2007.01.06010.1016/j.tetlet.2007.01.060Suche in Google Scholar

[9] Niizuma, S., Tsukazaki, M., Suda, H., Murata, T., Ohwada, J., Ozawa, S., Fukuda, H., Murasaki, C., Kohchi, M., Morikami, K., Yoshinari, K., Endo, M., Ura, M., Tanimura, H., Miyazaki, Y., Takasuka, T., Kawashima, A., Nanba, E., Nakano, K., Ogawa, K., Kobayashi, K., Okabe, H., Umeda, I., & Shimma, N. (2009). Synthesis of new camptothecin analogs with improved antitumour activities. Bioorganic & Medicinal Chemistry Letters, 19, 2018–2021. DOI: 10.1016/j.bmcl.2009.02.031. http://dx.doi.org/10.1016/j.bmcl.2009.02.03110.1016/j.bmcl.2009.02.031Suche in Google Scholar PubMed

[10] Rath, G., Schneider, C., Langlois, B., Sartelet, H., Morjani, H., Btaouri, H. E. L., Dedieu, S., & Martiny, L. (2009). De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. The International Journal of Biochemistry & Cell Biology, 41, 1165–1172. DOI: 10.1016/j.biocel.2008.10.021. http://dx.doi.org/10.1016/j.biocel.2008.10.02110.1016/j.biocel.2008.10.021Suche in Google Scholar PubMed

[11] Roopan, S. M., & Khan, F. R. N. (2010). ZnO nanorods catalyzed N-alkylation of piperidin-4-one, 4(3H)-pyrimidone, and ethyl 6-chloro-1,2-dihydro-2-oxo-4-phenylquinoline-3-carboxylate. Chemical Papers, 64, 678–682. DOI: 10.2478/s11696-010-0045-3. http://dx.doi.org/10.2478/s11696-010-0045-310.2478/s11696-010-0045-3Suche in Google Scholar

[12] Roopan, S. M., & Khan, F. R. N. (2009). Synthesis, antioxidant, hemolytic and cytotoxicity activity of AB ring core of mappicine. ARKIVOC, xiii, 161–169. 10.3998/ark.5550190.0010.d14Suche in Google Scholar

[13] Roopan, S. M., & Khan, F. N. (2008). Free radical scavenging activity of nitrogen heterocyclics-quinazolinones and tetrahydrocarbazolones. Indian Journal of Heterocyclic Chemistry, 18, 183–184. Suche in Google Scholar

[14] Roopan, S. M., Khan, F. R. N., & Mandal, B. K. (2010). Fe nano particles mediated C-N bond-forming reaction: Regioselective synthesis of 3-[(2-chloroquinolin-3-yl)methyl]pyrimidin-4(3H)ones. Tetrahedron Letters, 51, 2309–2311. DOI: 10. 1016/j.tetlet.2010.02.128. http://dx.doi.org/10.1016/j.tetlet.2010.02.12810.1016/j.tetlet.2010.02.128Suche in Google Scholar

[15] Roopan, S. M., Khan, F. N., Subashini, R., Hathwar, V. R., & Ng, S. W. (2009). 2-Chlorobenzo[h]quinoline-3-carbaldehyde. Acta Crystallographica Section E, E65, o2711. DOI: 10.1107/S1600536809040720. http://dx.doi.org/10.1107/S160053680904072010.1107/S1600536809040720Suche in Google Scholar PubMed PubMed Central

[16] Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/V08-149. http://dx.doi.org/10.1139/V08-14910.1139/v08-149Suche in Google Scholar

[17] Sapkal, S. B., Shelke, K. F., Shingate, B. B., & Shingare, M. S. (2009). Nickel nanoparticle-catalyzed facile and efficient onepot synthesis of polyhydroquinoline derivatives via Hantzsch condensation under solvent-free conditions. Tetrahedron Letters, 50, 1754–1756. DOI: 10.1016/j.tetlet.2009.01.140. http://dx.doi.org/10.1016/j.tetlet.2009.01.14010.1016/j.tetlet.2009.01.140Suche in Google Scholar

[18] Srivastava, A., & Singh, R. M. (2005). Vilsmeier-Haack reagent: A facile synthesis of 2-chloro-3-formylquinolines from Narylacetamides and transformation into different functionalities. Indian Journal of Chemistry Section B, 44B, 1868–1875. Suche in Google Scholar

[19] Wall, M. E., Wani, M. C., Cook, C. E., Palmer, K. H., McPhail, A. T., & Sim, G. A. (1966). Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. Journal of the American Chemical Society, 88, 3888–3890. DOI: 10.1021/ja00968a057. http://dx.doi.org/10.1021/ja00968a05710.1021/ja00968a057Suche in Google Scholar

[20] Wu, C., Qiao, X., Chen, J., Wang, H., Tan, F., & Li, S. (2006). A novel chemical route to prepare ZnO nanoparticles. Materials Letters, 60, 1828–1832. DOI: 10.1016/j.matlet.2005.12.046. http://dx.doi.org/10.1016/j.matlet.2005.12.04610.1016/j.matlet.2005.12.046Suche in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0058-y/html
Button zum nach oben scrollen