Startseite Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts

  • Dudu Wu EMAIL logo und Zhi Chen
Veröffentlicht/Copyright: 23. September 2010
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The synthesis of methyl acetoacetate (MAA) by methoxycarbonylation of acetone with dimethyl carbonate (DMC) was carried out in the presence of MgO and alkali-promoted MgO catalysts. From among Li, Na, K, and Cs, potassium was found to be the most effective promoter to improve the activity of MgO. The effect of K/MgO with variable content of K was also investigated, and the individual catalysts were characterised by the XRD, BET, SEM, CO2-TPD, and in situ CO2 IR techniques. The results showed that the addition of a small amount of K (1.97 mass %) could promote MAA formation, but a higher K loading caused a decrease in the yield of MAA, which might result from particle agglomeration and the presence of stable potassium carbonates. In situ FTIR experiments of co-adsorbed reactants indicated that the reaction probably proceeded via abstraction of Hα from acetone by base sites.

[1] Beutel, T. (1998). Spectroscopic and kinetic study of the alkylation of phenol with dimethyl carbonate over NaX zeolite. Journal of the Chemical Society, Faraday Transactions, 94, 985–993. DOI: 10.1039/a706356c. http://dx.doi.org/10.1039/a706356c10.1039/a706356cSuche in Google Scholar

[2] Díez, V. K., Apesteguía, C. R., & Di Cosimo, J. I. (2006). Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts. Journal of Catalysis, 240, 235–244. DOI: 10.1016/j.jcat.2006.04.003. http://dx.doi.org/10.1016/j.jcat.2006.04.00310.1016/j.jcat.2006.04.003Suche in Google Scholar

[3] Díez, V. K., Apesteguía, C. R., & Di Cosimo, J. I. (2000). Acid-base properties and active site requirements for elimination reactions on alkali-promoted MgO catalysts. Catalysis Today, 63, 53–62. DOI: 10.1016/S0920-5861(00)00445-4. http://dx.doi.org/10.1016/S0920-5861(00)00445-410.1016/S0920-5861(00)00445-4Suche in Google Scholar

[4] Di Cosimo, J. I., Díez, V. K., & Apesteguía, C. R. (1996). Base catalysis for the synthesis of α,β-unsaturated ketones from the vapor-phase aldol condensation of acetone. Applied Catalysis A: General, 137, 149–166. DOI: 10.1016/0926-860X(95)00289-8. http://dx.doi.org/10.1016/0926-860X(95)00289-810.1016/0926-860X(95)00289-8Suche in Google Scholar

[5] Fischer, R. (1995). Preparation of α,ω-dicarboxylic acid diesters. U.S. Patent No. 5453535. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[6] Fu, Y., Baba, T., & Ono, Y. (1998). Vapor-phase reactions of catechol with dimethyl carbonate. Part I. O-Methylation of catechol over alumina. Applied Catalysis A: General, 166, 419–424. DOI: 10.1016/S0926-860X(97)00287-1. http://dx.doi.org/10.1016/S0926-860X(97)00287-110.1016/S0926-860X(97)00287-1Suche in Google Scholar

[7] Fuming, M., Zhi, P., & Guangxing, L. (2004). The transesterification of dimethyl carbonate with phenol over Mg-Al-hydrotalcite catalyst. Organic Process Research & Development, 8, 372–375. DOI: 10.1021/op0302098. http://dx.doi.org/10.1021/op030209810.1021/op0302098Suche in Google Scholar

[8] Jyothi, T. M., Raja, T., Talawar, M. B., & Rao, B. S. (2001). Selective O-methylation of catechol using dimethyl carbonate over calcined Mg-Al hydrotalcites. Applied Catalysis A: General, 211, 41–46. DOI: 10.1016/S0926-860X(00)00839-5. http://dx.doi.org/10.1016/S0926-860X(00)00839-510.1016/S0926-860X(00)00839-5Suche in Google Scholar

[9] Kanno, T., & Kobayashi, M. (1994) Evaluation of basicity of alkali metal-doped MgO in the scope of change of carbonate species. In H. Hattori, M. Misono, & Y. Ono (Eds.), Acid-base catalysis II: Proceedings of the international symposium on acid-base catalysis II, Sapporo, December 2–4, 1993 (pp. 207–216). Tokyo, Japan: Kodansha. http://dx.doi.org/10.1016/S0167-2991(08)61821-210.1016/S0167-2991(08)61821-2Suche in Google Scholar

[10] Koehler, G., & Metz, J. (1998). Process for preparing diesters of higher α,ω-dicarboxylic acids. U.S. Patent No. 5786502. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[11] Köhler, G. (1995). Process for the preparation of pimelic esters. U.S. Patent No. 5436365. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[12] Lapidus, A. L., Eliseev, O. L., Bondarenko, T. N., Sizan, O. E., & Ostapenko, A. G. (2001). Carbonylation of chloroacetone to methyl acetoacetate. Russian Chemical Bulletin, 50, 2239–2241. DOI: 10.1023/A:1015042510988. http://dx.doi.org/10.1023/A:101504251098810.1023/A:1015042510988Suche in Google Scholar

[13] Lide, D. R. (1990). Handbook of chemistry and physics (71st ed.). Boca Raton, FL, USA: CRC Press. Suche in Google Scholar

[14] Marques, C. A., Selva, M., Tundo, P., & Montanari, F. (1993). Reaction of oximes with dimethyl carbonate: a new entry to 3-methyl-4,5-disubstituted-4-oxazolin-2-ones. Journal of Organic Chemistry, 58, 5765–5770. DOI: 10.1021/jo00073a041. http://dx.doi.org/10.1021/jo00073a04110.1021/jo00073a041Suche in Google Scholar

[15] Pohl, F. J., & Schmidt, W. (1944). Process of preparing acetoacetic esters. U.S. Patent No. 2351366. Washington, D.C., USA: U.S. Patent and Trademark Office. Suche in Google Scholar

[16] Ruest, L., Blouin, G., & Deslongchamps, P. A. (1976). Convenient synthesis of 2-carbomethoxycyclohexanone. Synthetic Communications, 6, 169–174. DOI: 10.1080/00397917608072627. http://dx.doi.org/10.1080/0039791760807262710.1080/00397917608072627Suche in Google Scholar

[17] Selva, M., Marques, C. A., & Tundo, P. (1993). The addition reaction of dialkyl carbonates to ketones. Gazzetta Chimica Italiana, 123, 515–518. Suche in Google Scholar

[18] Shieh, W.-C., Dell, S., Bach, A., Repi., O., & Blacklock, T. J. (2003). Dual nucleophilic catalysis with DABCO for the N-methylation of indoles. Journal of Organic Chemistry, 68, 1954–1957. DOI: 10.1021/jo0266644. http://dx.doi.org/10.1021/jo026664410.1021/jo0266644Suche in Google Scholar

[19] Shivarkar, A. B., Gupte, S. P., & Chaudhari, R. V. (2005). Selective synthesis of N,N-dimethyl aniline derivatives using dimethyl carbonate as a methylating agent and onium salt as a catalyst. Journal of Molecular Catalysis A: Chemical, 226, 49–56. DOI: 10.1016/j.molcata.2004.09.025. http://dx.doi.org/10.1016/j.molcata.2004.09.02510.1016/j.molcata.2004.09.025Suche in Google Scholar

[20] Tundo, P., Moraglio, G., & Trotta, F. (1989). Gas-liquid phase-transfer catalysis: a new continuous-flow method in organic synthesis. Industrial & Engineering Chemistry Research, 28, 881–890. DOI: 10.1021/ie00091a001. http://dx.doi.org/10.1021/ie00091a00110.1021/ie00091a001Suche in Google Scholar

[21] Tundo, P., & Selva, M. (2002). The chemistry of dimethyl carbonate. Accounts of Chemical Research, 35, 706–716. DOI: 10.1021/ar010076f. http://dx.doi.org/10.1021/ar010076f10.1021/ar010076fSuche in Google Scholar

[22] Tundo, P., Trotta, F., Moraglio, G., & Ligorati, F. (1988). Continuous-flow processes under gas.liquid phase-transfer catalysis (GL-PTC) conditions: the reaction of dialkyl carbonates with phenols, alcohols, and mercaptans. Industrial & Engineering Chemistry Research, 27, 1565–1571. DOI: 10.1021/ie00081a002. http://dx.doi.org/10.1021/ie00081a00210.1021/ie00081a002Suche in Google Scholar

[23] Vauthey, I., Valot, F., Gozzi, C., Fache, F., & Lemaire, M. (2000). An environmentally benign access to carbamates and ureas. Tetrahedron Letters, 41, 6347–6350. DOI: 10.1016/S0040-4039(00)01051-0. http://dx.doi.org/10.1016/S0040-4039(00)01051-010.1016/S0040-4039(00)01051-0Suche in Google Scholar

[24] Wu, D., Fu, X., Li, J., Zhao, N., Wei, W., & Sun, Y. (2008). A novel route for the synthesis of methyl acetoacetate from dimethyl carbonate and acetone over solid base. Catalysis Today, 131, 372–377. DOI: 10.1016/j.cattod.2007.10.047. http://dx.doi.org/10.1016/j.cattod.2007.10.04710.1016/j.cattod.2007.10.047Suche in Google Scholar

[25] Yadav, G. D., & Lathi, P. S. (2004). Synergism between microwave and enzyme catalysis in intensification of reactions and selectivities: transesterification of methyl acetoacetate with alcohols. Journal of Molecular Catalalysis A: Chemical, 223, 51–56. DOI: 10.1016/j.molcata.2003.09.050. http://dx.doi.org/10.1016/j.molcata.2003.09.05010.1016/j.molcata.2003.09.050Suche in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0068-9/html
Button zum nach oben scrollen