Abstract
Influence of electrode morphology on electrochemical properties of lead dioxide electrodes (β-PbO2) for oxygen-ozone evolution reactions in acid medium was investigated using scanning electronic microscopy (SEM), cyclic voltammetry (CV), polarization curves (PC), and determination of the current efficiency (Φ). Experimental findings revealed that application of high electrodeposition current densities furnishes more rough β-PbO2 films. Surface characteristics were verified by SEM images and the analysis of interfacial pseudo-capacitances and morphology factor (φ). Kinetic study of the overall electrode process (O2 + O3) based on the analysis of the Tafel slope revealed that the electrode morphology and electrolyte composition considerably affect the electrode kinetics. In most cases, the existence of two Tafel slopes distributed in the low and high overpotential domains was observed. Abnormal Tafel slopes (b ≠ 120 mV) obtained for the primary water discharge step during water electrolysis were interpreted considering the apparent charge transfer coefficient (α apa). Optimum conditions for the ozone production were obtained for the less rough β-PbO2 electrode immersed in a sulfuric acid solution (1.0 mol dm−3) containing KPF6 (30 × 10−3 mol dm−3), where the current efficiency of 15 mass % for the ozone production was obtained.
[1] Arihara, K., Terashima, C., & Fujishima, A. (2007). Electrochemical production of high-concentration ozone-water using freestanding perforated diamond electrodes. Journal of The Electrochemical Society, 154, E71–E75. DOI: 10.1149/1.2509385. http://dx.doi.org/10.1149/1.250938510.1149/1.2509385Search in Google Scholar
[2] Awad, M. I., Sata, S., Kaneda, K., Ikematsu, M., Okajima, T., & Ohsaka, T. (2006). Ozone electrogeneration at a high current efficiency using a tantalum oxide-platinum composite electrode. Electrochemistry Communications, 8, 1263–1269. DOI: 10.1016/j.elecom.2006.06.008. http://dx.doi.org/10.1016/j.elecom.2006.06.00810.1016/j.elecom.2006.06.008Search in Google Scholar
[3] Babak, A. A., Amadelli, R., De Battisti, A., & Fateev, V. N. (1994). Influence of anions on oxygen/ozone evolution on PbO2/spe and PbO2/Ti electrodes in neutral pH media. Electrochimica Acta, 39, 1597–1602. DOI: 10.1016/0013-4686(94)85141-7. http://dx.doi.org/10.1016/0013-4686(94)85141-710.1016/0013-4686(94)85141-7Search in Google Scholar
[4] Bockris, J. O’M., Reddy, A., & Gamboa-Aldeco, M. (2000). Modern electrochemistry (2nd ed., Vol. 2). New York, NY, USA: Plenum Publishers. Search in Google Scholar
[5] Brenet, J., & Traore, K. (1971). Transfer coefficients in electrochemical kinetics. London, UK: Academic Press. Search in Google Scholar
[6] Conway, B. E., MacKinnon, D. J., & Tilak, B. V. (1970). Significance of electrochemical Brøsted factors. Kinetic studies over a wide range of temperatures. Transactions of the Faraday Society, 66, 1203–1226. DOI: 10.1039/TF9706601203. http://dx.doi.org/10.1039/tf970660120310.1039/TF9706601203Search in Google Scholar
[7] Da Silva, L. M., Boodts, J. F. C., & De Faria, L. A. (2001a). Oxygen evolution at RuO2(x) + Co3O4(1−x) electrodes from acid solution. Electrochimica Acta, 46, 1369–1375. DOI: 10.1016/S0013-4686(00)00716-7. http://dx.doi.org/10.1016/S0013-4686(00)00716-710.1016/S0013-4686(00)00716-7Search in Google Scholar
[8] Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2001b). Determination of the morphology factor of oxide layers. Electrochimica Acta, 47, 395–403. DOI: 10.1016/S0013-4686(01)00738-1. http://dx.doi.org/10.1016/S0013-4686(01)00738-110.1016/S0013-4686(01)00738-1Search in Google Scholar
[9] Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2001c). Green processes for environmental application. Electrochemical ozone production. Pure and Applied Chemistry, 73, 1871–1884. DOI: 10.1351/pac200173121871. http://dx.doi.org/10.1351/pac20017312187110.1351/pac200173121871Search in Google Scholar
[10] Da Silva, L. M., De Faria, L. A., & Boodts, J. F. C. (2003). Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochimica Acta, 48, 699–709. DOI: 10.1016/S0013-4686(02)00739-9. http://dx.doi.org/10.1016/S0013-4686(02)00739-910.1016/S0013-4686(02)00739-9Search in Google Scholar
[11] Da Silva, L. M., Franco, D. V., De Faria, L. A., & Boodts, J. F. C. (2004). Surface, kinetics and electrocatalytic properties of Ti/(IrO2 + Ta2O5) electrodes, prepared using controlled cooling rate, for ozone production. Electrochimica Acta, 49, 3977–3988. DOI: 10.1016/j.electacta.2003.11.039. http://dx.doi.org/10.1016/j.electacta.2003.11.03910.1016/j.electacta.2003.11.039Search in Google Scholar
[12] Da Silva, L. M., Franco, D. V., Gonçalves, I. C., & Sousa, L. G. (2009). Advanced technologies based on ozonation for water treatment. In N. Gertsen & L. Sønderby (Eds.), Water purification (pp. 1–53). New York, NY, USA: Nova Science Publishers. Search in Google Scholar
[13] Da Silva, L. M., Franco, D. V., Sousa, L. G., & Gonçalves, I. C. (2010). Characterization of an electrochemical reactor for the ozone production in electrolyte-free water. Journal of Applied Electrochemistry, 40, 855–864. DOI: 10.1007/s10800-009-0069-y. http://dx.doi.org/10.1007/s10800-009-0069-y10.1007/s10800-009-0069-ySearch in Google Scholar
[14] Feng, J., & Johnson, D. C. (1991). Electrocatalysis of anodic oxygen-transfer reactions: Titanium substrates for pure and doped lead dioxide films. Journal of The Electrochemical Society, 138, 3328–3337. DOI: 10.1149/1.2085410. http://dx.doi.org/10.1149/1.208541010.1149/1.2085410Search in Google Scholar
[15] Filoche, M., & Sapoval, B. (2000). Shape-dependency of current through non-linear irregular electrodes. Electrochimica Acta, 46, 213–220. DOI: 10.1016/S0013-4686(00)00575-2. http://dx.doi.org/10.1016/S0013-4686(00)00575-210.1016/S0013-4686(00)00575-2Search in Google Scholar
[16] Foller, P. C. (1982). Status of research on ozone generation by electrolysis. In R. G. Rice & A. N. Netzer (Eds.), Handbook of ozone technology and applications (Vol. 1, pp. 85–104). Ann Arbor, MI: Ann Arbor Science. Search in Google Scholar
[17] Foller, P. C. & Kelsall, G. H. (1993). Ozone generation via the electrolysis of fluoboric acid using glassy carbon anodes and air depolarized cathodes. Journal of Applied Electrochemistry, 23, 996–1010. DOI: 10.1007/BF00266121. http://dx.doi.org/10.1007/BF0026612110.1007/BF00266121Search in Google Scholar
[18] Foller, P. C., & Tobias, C. W. (1982). The anodic evolution of ozone. Journal of The Electrochemical Society, 129, 506–515. DOI: 10.1149/1.2123890. http://dx.doi.org/10.1149/1.212389010.1149/1.2123890Search in Google Scholar
[19] Franco, D. V., Da Silva, L. M., Jardim, W. F., & Boodts, J. F. C. (2006). Influence of the electrolyte composition on the kinetics of the oxygen evolution reaction and ozone production processes. Journal of the Brazilian Chemical Society, 17, 746–757. DOI: 10.1590/S0103-50532006000400017. http://dx.doi.org/10.1590/S0103-5053200600040001710.1590/S0103-50532006000400017Search in Google Scholar
[20] Kitsuka, K., Kaneda, K., Ikematsu, M., Iseki, M., Mushiake, K., & Ohsaka, T. (2010). n-Type TiO2 thin films for electrochemical ozone production. Journal of The Electrochemical Society, 157, F30–F34. DOI: 10.1149/1.3265469. http://dx.doi.org/10.1149/1.326546910.1149/1.3265469Search in Google Scholar
[21] Kötz, E. R., & Stucki, S. (1987). Ozone and oxygen evolution on PbO2 electrodes in acid solution. Journal of Electroanalytical Chemistry, 228, 407–415. DOI: 10.1016/0022-0728(87)80120-1. http://dx.doi.org/10.1016/0022-0728(87)80120-110.1016/0022-0728(87)80120-1Search in Google Scholar
[22] Lefebvre, M. C. (2002). Establishing the link between multistep electrochemical reaction mechanisms and experimental Tafel slopes. In B. E. Conway, J. O’M. Bockris, & R. E. White (Eds.), Modern aspects of electrochemistry (Vol. 32). New York, NY, USA: Kluwer. Search in Google Scholar
[23] Malpass, G. R. P., Neves, R. S., & Motheo, A. J. (2006). A comparative study of commercial and laboratory-made Ti/Ru0.3Ti0.7O2 DSA® electrodes: “In situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochimica Acta, 52, 936–944. DOI: 10.1016/j.electacta.2006.06.032. http://dx.doi.org/10.1016/j.electacta.2006.06.03210.1016/j.electacta.2006.06.032Search in Google Scholar
[24] Merrill, M. D., & Dougherty, R. C. (2008). Metal oxide catalysts for the evolution of O2 from H2O. Journal of Physical Chemistry C, 112, 3655–3666. DOI: 10.1021/jp710675m. http://dx.doi.org/10.1021/jp710675m10.1021/jp710675mSearch in Google Scholar
[25] Pavlov, D., Kirchev, A., Stoycheva, M., & Monahov, B. (2004). Influence of H2SO4 concentration on the mechanism of the processes and on the electrochemical activity of the Pb/PbO2/PbSO4 electrode. Journal of Power Sources, 137, 288–308. DOI: 10.1016/j.jpowsour.2004.06.006. http://dx.doi.org/10.1016/j.jpowsour.2004.06.00610.1016/j.jpowsour.2004.06.006Search in Google Scholar
[26] Pohl, J. P., & Ricket, H. (1981). Electrochemistry of lead dioxide. In S. Trasatti (Ed.), Electrodes of conductive metallic oxides (Part A, pp. 183–220). Amsterdam, The Netherlands: Elsevier. Search in Google Scholar
[27] Pourbaix, M. (1974). Atlas of electrochemical equilibria in aqueous solutions (p. 541). Houston, TX, USA: National Association of Corrosion Engineers. Search in Google Scholar
[28] Rüetschi, P. (1959). Overvoltage and catalysis. Journal of The Electrochemical Society, 106, 819–827. DOI: 10.1149/1.2427504. http://dx.doi.org/10.1149/1.242750410.1149/1.2427504Search in Google Scholar
[29] Shub, D. M., & Reznik, M. F. (1985). Method for the evaluation of the ohmic errors and the correction of polarization curves of metal-oxide anodes. Soviet Electrochemistry, 21, 795–800. Search in Google Scholar
[30] Swamy, B. E. K., Maye, J., Vannoy, C., & Schell, M. (2004). Improvements in the efficiency of the oxidation of formic acid obtained by increasing the overall anion adsorption strength. Journal of Physical Chemistry B, 108, 16488–16494. DOI: 10.1021/jp048472d. http://dx.doi.org/10.1021/jp048472d10.1021/jp048472dSearch in Google Scholar
[31] Wabner, D., & Grambow, C. (1985). Reactive intermediates during oxidation of water on lead dioxide and platinum electrodes. Journal of Electroanalytical Chemistry, 195, 95–108. DOI: 10.1016/0022-0728(85)80008-5. http://dx.doi.org/10.1016/0022-0728(85)80008-510.1016/0022-0728(85)80008-5Search in Google Scholar
[32] Wang, J., Li, X., Guo, L., & Luo, X. (2008). Effect of surface morphology of lead dioxide particles on their ozone generating performance. Applied Surface Science, 254, 6666–6670. DOI: 10.1016/j.apsusc.2008.04.052. http://dx.doi.org/10.1016/j.apsusc.2008.04.05210.1016/j.apsusc.2008.04.052Search in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate