Abstract
Polyethylene glycol was found to be an inexpensive non-toxic and effective medium for one pot synthesis of high yields of decahydroacridine-1,8-diones in the presence of ceric ammonium nitrate as the catalyst. Moreover, the solvent can be recovered and reused.
[1] Aguzzi, A., & Heikenwalder, M. (2003). Prion diseases: Cannibals and garbage piles. Nature, 423, 127–129. DOI: 10.1038/423127a. http://dx.doi.org/10.1038/423127a10.1038/423127aSearch in Google Scholar PubMed
[2] Chang, M.-Y., Wu, T.-C., Lin, C.-Y., & Hung, C.-Y. (2006). CAN-mediated rearrangement of 4-benzhydrylidenepiperidines. Tetrahedron Letters, 47, 8347–8350. DOI: 10.1016/j.tetlet.2006.09.068. http://dx.doi.org/10.1016/j.tetlet.2006.09.06810.1016/j.tetlet.2006.09.068Search in Google Scholar
[3] Chen, J., Spear, S. K., Huddleston, J. G., & Rogers, R. D. (2005). Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 7, 64–82. DOI: 10.1039/b413546f. http://dx.doi.org/10.1039/b413546f10.1039/b413546fSearch in Google Scholar
[4] Chu, C. M., Gao, S., Sastry, M. N. V., Kuo, C. W., Lu, C., Liu, J. T., & Yao, C. F. (2007). Ceric ammonium nitrate (CAN) as a green and highly efficient promoter for the 1,4-addition of thiols and benzeneselenol to α,β-unsaturated ketones. Tetrahedron, 63, 1863–1871. DOI: 10.1016/j.tet.2006.12.018 http://dx.doi.org/10.1016/j.tet.2006.12.01810.1016/j.tet.2006.12.018Search in Google Scholar
[5] Han, B., Jia, X. D., Jin, X. L., Zhou, Y. L., Yang, L., Liu, Z. L., & Yu, W. (2006). A CAN-initiated aza-Diels-Alder reaction for a facile synthesis of 4-amido-N-yl tetrahydroquinolines. Tetrahedron, 47, 3545–3547. DOI: 10.1016/j.tetlet.2006.03. 083. http://dx.doi.org/10.1016/j.tetlet.2006.03.08310.1016/j.tetlet.2006.03.083Search in Google Scholar
[6] Jin, T.-S., Zhang, J.-S., Guo, T.-T., Wang, A.-Q., & Li, T.-S. (2004). One-pot clean synthesis of 1,8-dioxo-decahydroacridines catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Synthesis, 2004, 2001–2005. DOI: 10.1055/s-2004-829151. http://dx.doi.org/10.1055/s-2004-82915110.1055/s-2004-829151Search in Google Scholar
[7] Jorapur, Y. R., Rajagopal, G., Saikia, P. J., & Pal, R. R. (2008). Poly(ethylene glycol) (PEG) as an efficient and recyclable reaction medium for the synthesis of dibenz[b,f]-1,4-oxazepine. Tetrahedron Letters, 49, 1495–1497. DOI: 10.1016/j.tetlet.2007.12.115. http://dx.doi.org/10.1016/j.tetlet.2007.12.11510.1016/j.tetlet.2007.12.115Search in Google Scholar
[8] Kidwai, M., Bansal, V., & Mothsra, P. (2007). Molecular iodine: A highly efficient catalyst for the synthesis of 7-arylbenzopyrano[1,3]diazepines in non-protic solvents. Journal of Molecular Catalysis A: Chemical, 266, 43–46. DOI: 10.1016/j.molcata.2006.10.037. http://dx.doi.org/10.1016/j.molcata.2006.10.03710.1016/j.molcata.2006.10.037Search in Google Scholar
[9] Kidwai, M., Bhatnagar, D., Mishra, N. K., & Bansal, V. (2008a). CAN catalyzed synthesis of β-amino carbonyl compounds via Mannich reaction in PEG. Catalysis Communications, 9, 2547–2549. DOI: 10.1016/j.catcom.2008.07.010. http://dx.doi.org/10.1016/j.catcom.2008.07.01010.1016/j.catcom.2008.07.010Search in Google Scholar
[10] Kidwai, M., Mishra, N. K., Bansal, V., Kumar, A., & Mozumdar, S. (2008b). Ni-nanoparticles usage for the reduction of ketones. Catalysis Communications, 9, 612–617. DOI: 10.1016/j.catcom.2007.06.010. http://dx.doi.org/10.1016/j.catcom.2007.06.01010.1016/j.catcom.2007.06.010Search in Google Scholar
[11] Kocisko, D. A., Baron, G. S., Rubenstein, R., Chen, J., Kuizon, S., & Caughey, B. (2003). New inhibitors of scrapie-associated prion protein formation in a library of 2,000 drugs and natural products. Journal of Virology, 77, 10288–10294. DOI: 10.1128/JVI.77.19.10288-10294.2003. http://dx.doi.org/10.1128/JVI.77.19.10288-10294.200310.1128/JVI.77.19.10288-10294.2003Search in Google Scholar
[12] Korth, C., May, B. C. H., Cohen, F. E., & Prusiner, S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Science of the United States of America, 98, 9836–9841. DOI: 10.1073/pnas.161274798. http://dx.doi.org/10.1073/pnas.16127479810.1073/pnas.161274798Search in Google Scholar
[13] Lacassagne, A., Buu-Hoï, N. P., Daudel, R., & Zajdela, F. (1956). The relation between carcinogenic activity and the physical and chemical properties of angular benzacridines. Advances in Cancer Research, 4, 315–369. DOI: 10.1016/S0065-230X(08)60727-7. http://dx.doi.org/10.1016/S0065-230X(08)60727-710.1016/S0065-230X(08)60727-7Search in Google Scholar
[14] Mao, J., Guo, J., Fang, F., & Ji, S.-J. (2008). Highly effi-cient copper(0)-catalyzed Suzuki-Miyaura cross-coupling reactions in reusable PEG-400. Tetrahedron, 64, 3905–3911. DOI: 10.1016/j.tet.2008.02.068. http://dx.doi.org/10.1016/j.tet.2008.02.06810.1016/j.tet.2008.02.068Search in Google Scholar
[15] Martín, N., Quinteiro, M., Seoane, C., Soto, J. L., Mora, A., Suárez, M., Ochoa, E., Morales, A., & Del Bosque, J. R. (1995). Synthesis and conformational study of acridine derivatives related to 1,4-dihydropyridines. Journal of Heterocyclic Chemistry, 32, 235–238. DOI: 10.1002/jhet.5570320139. http://dx.doi.org/10.1002/jhet.557032013910.1002/jhet.5570320139Search in Google Scholar
[16] Nair, V., & Deepthi, A. (2007) Cerium(IV) ammonium nitrate — a versatile single-electron oxidant. Chemical Reviews, 107, 1862–1891. DOI: 10.1021/cr068408n. http://dx.doi.org/10.1021/cr068408n10.1021/cr068408nSearch in Google Scholar PubMed
[17] Ryou, C., Legname, G., Peretz, D., Craig, J. C., Baldwin, M. A., & Prusiner, S. B. (2003). Differential inhibition of prion propagation by enantiomers of quinacrine. Laboratory Investigation, 83, 837–843. DOI: 10.1097/01.LAB.0000074919.08232.A2. 10.1097/01.LAB.0000074919.08232.A2Search in Google Scholar
[18] Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y., & Wang, X.-S. (2008). An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. Journal of Heterocyclic Chemistry, 45, 653–660. DOI:10.1002/jhet.5570450303. http://dx.doi.org/10.1002/jhet.557045030310.1002/jhet.5570450303Search in Google Scholar
[19] Shi, D.-Q., Shi, J.-W., & Yao, H. (2009). Three-component one-pot synthesis of polyhydroacridine derivatives in aqueous media. Synthetic Communications, 39, 664–675. DOI: 10.1080/00397910802431057. http://dx.doi.org/10.1080/0039791080243105710.1080/00397910802431057Search in Google Scholar
[20] Spalding, D. P., Chapin, E. C., & Mosher, H. S. (1954). Heterocyclic basic compounds. XV. Benzacridine derivatives. Journal of Organic Chemistry, 19, 357–364. DOI: 10.1021/jo01368a011. http://dx.doi.org/10.1021/jo01368a01110.1021/jo01368a011Search in Google Scholar
[21] Sridharan, V., & Menéndez, J. C. (2008). Two-step stereocontrolled synthesis of densely functionalized cyclic β-aminoesters containing four stereocenters, based on a new cerium(IV) ammonium nitrate catalyzed sequential threecomponent reaction. Organic Letters, 10, 4303–4306. DOI: 10.1021/ol801738d. http://dx.doi.org/10.1021/ol801738d10.1021/ol801738dSearch in Google Scholar PubMed
[22] Turnbull, S., Tabner, B. J., Brown, D. R., & Allsop, D. (2003). Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. NeuroReport, 14, 1743–1745. http://dx.doi.org/10.1097/00001756-200309150-0001710.1097/00001756-200309150-00017Search in Google Scholar PubMed
[23] Wang, G.-W., & Miao, C.-B. (2006). Environmentally benign one-pot multi-component approaches to the synthesis of novel unsymmetrical 4-arylacridinediones. Green Chemistry, 8, 1080–1085. DOI: 10.1039/b604064k. http://dx.doi.org/10.1039/b604064k10.1039/b604064kSearch in Google Scholar
[24] Wang, X.-S., Shi, D.-Q., Zhang, Y.-F., Wang, S.-H., & Tu, S.-J. (2004). Synthesis of 9-arylpolyhydroacridine in water catalyzed by triethylbenzylammonium chloride (TEBA). Chinese Journal of Organic Chemistry, 24, 430–434. Search in Google Scholar
[25] Zhang, Z.-H., Yin, L., Wang, Y.-M., Liu, J.-Y., & Li, Y. (2004). Indium tribromide in poly(ethylene glycol) (PEG): a novel and efficient recycle system for chemoselective deprotection of 1,1-diacetates. Green Chemistry, 6, 563–565. DOI: 10.1039/b410583d. http://dx.doi.org/10.1039/b410583d10.1039/b410583dSearch in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Articles in the same Issue
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate