Home Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Article
Licensed
Unlicensed Requires Authentication

Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate

  • Mazaahir Kidwai EMAIL logo and Divya Bhatnagar
Published/Copyright: September 23, 2010
Become an author with De Gruyter Brill

Abstract

Polyethylene glycol was found to be an inexpensive non-toxic and effective medium for one pot synthesis of high yields of decahydroacridine-1,8-diones in the presence of ceric ammonium nitrate as the catalyst. Moreover, the solvent can be recovered and reused.

[1] Aguzzi, A., & Heikenwalder, M. (2003). Prion diseases: Cannibals and garbage piles. Nature, 423, 127–129. DOI: 10.1038/423127a. http://dx.doi.org/10.1038/423127a10.1038/423127aSearch in Google Scholar PubMed

[2] Chang, M.-Y., Wu, T.-C., Lin, C.-Y., & Hung, C.-Y. (2006). CAN-mediated rearrangement of 4-benzhydrylidenepiperidines. Tetrahedron Letters, 47, 8347–8350. DOI: 10.1016/j.tetlet.2006.09.068. http://dx.doi.org/10.1016/j.tetlet.2006.09.06810.1016/j.tetlet.2006.09.068Search in Google Scholar

[3] Chen, J., Spear, S. K., Huddleston, J. G., & Rogers, R. D. (2005). Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chemistry, 7, 64–82. DOI: 10.1039/b413546f. http://dx.doi.org/10.1039/b413546f10.1039/b413546fSearch in Google Scholar

[4] Chu, C. M., Gao, S., Sastry, M. N. V., Kuo, C. W., Lu, C., Liu, J. T., & Yao, C. F. (2007). Ceric ammonium nitrate (CAN) as a green and highly efficient promoter for the 1,4-addition of thiols and benzeneselenol to α,β-unsaturated ketones. Tetrahedron, 63, 1863–1871. DOI: 10.1016/j.tet.2006.12.018 http://dx.doi.org/10.1016/j.tet.2006.12.01810.1016/j.tet.2006.12.018Search in Google Scholar

[5] Han, B., Jia, X. D., Jin, X. L., Zhou, Y. L., Yang, L., Liu, Z. L., & Yu, W. (2006). A CAN-initiated aza-Diels-Alder reaction for a facile synthesis of 4-amido-N-yl tetrahydroquinolines. Tetrahedron, 47, 3545–3547. DOI: 10.1016/j.tetlet.2006.03. 083. http://dx.doi.org/10.1016/j.tetlet.2006.03.08310.1016/j.tetlet.2006.03.083Search in Google Scholar

[6] Jin, T.-S., Zhang, J.-S., Guo, T.-T., Wang, A.-Q., & Li, T.-S. (2004). One-pot clean synthesis of 1,8-dioxo-decahydroacridines catalyzed by p-dodecylbenzenesulfonic acid in aqueous media. Synthesis, 2004, 2001–2005. DOI: 10.1055/s-2004-829151. http://dx.doi.org/10.1055/s-2004-82915110.1055/s-2004-829151Search in Google Scholar

[7] Jorapur, Y. R., Rajagopal, G., Saikia, P. J., & Pal, R. R. (2008). Poly(ethylene glycol) (PEG) as an efficient and recyclable reaction medium for the synthesis of dibenz[b,f]-1,4-oxazepine. Tetrahedron Letters, 49, 1495–1497. DOI: 10.1016/j.tetlet.2007.12.115. http://dx.doi.org/10.1016/j.tetlet.2007.12.11510.1016/j.tetlet.2007.12.115Search in Google Scholar

[8] Kidwai, M., Bansal, V., & Mothsra, P. (2007). Molecular iodine: A highly efficient catalyst for the synthesis of 7-arylbenzopyrano[1,3]diazepines in non-protic solvents. Journal of Molecular Catalysis A: Chemical, 266, 43–46. DOI: 10.1016/j.molcata.2006.10.037. http://dx.doi.org/10.1016/j.molcata.2006.10.03710.1016/j.molcata.2006.10.037Search in Google Scholar

[9] Kidwai, M., Bhatnagar, D., Mishra, N. K., & Bansal, V. (2008a). CAN catalyzed synthesis of β-amino carbonyl compounds via Mannich reaction in PEG. Catalysis Communications, 9, 2547–2549. DOI: 10.1016/j.catcom.2008.07.010. http://dx.doi.org/10.1016/j.catcom.2008.07.01010.1016/j.catcom.2008.07.010Search in Google Scholar

[10] Kidwai, M., Mishra, N. K., Bansal, V., Kumar, A., & Mozumdar, S. (2008b). Ni-nanoparticles usage for the reduction of ketones. Catalysis Communications, 9, 612–617. DOI: 10.1016/j.catcom.2007.06.010. http://dx.doi.org/10.1016/j.catcom.2007.06.01010.1016/j.catcom.2007.06.010Search in Google Scholar

[11] Kocisko, D. A., Baron, G. S., Rubenstein, R., Chen, J., Kuizon, S., & Caughey, B. (2003). New inhibitors of scrapie-associated prion protein formation in a library of 2,000 drugs and natural products. Journal of Virology, 77, 10288–10294. DOI: 10.1128/JVI.77.19.10288-10294.2003. http://dx.doi.org/10.1128/JVI.77.19.10288-10294.200310.1128/JVI.77.19.10288-10294.2003Search in Google Scholar

[12] Korth, C., May, B. C. H., Cohen, F. E., & Prusiner, S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Science of the United States of America, 98, 9836–9841. DOI: 10.1073/pnas.161274798. http://dx.doi.org/10.1073/pnas.16127479810.1073/pnas.161274798Search in Google Scholar

[13] Lacassagne, A., Buu-Hoï, N. P., Daudel, R., & Zajdela, F. (1956). The relation between carcinogenic activity and the physical and chemical properties of angular benzacridines. Advances in Cancer Research, 4, 315–369. DOI: 10.1016/S0065-230X(08)60727-7. http://dx.doi.org/10.1016/S0065-230X(08)60727-710.1016/S0065-230X(08)60727-7Search in Google Scholar

[14] Mao, J., Guo, J., Fang, F., & Ji, S.-J. (2008). Highly effi-cient copper(0)-catalyzed Suzuki-Miyaura cross-coupling reactions in reusable PEG-400. Tetrahedron, 64, 3905–3911. DOI: 10.1016/j.tet.2008.02.068. http://dx.doi.org/10.1016/j.tet.2008.02.06810.1016/j.tet.2008.02.068Search in Google Scholar

[15] Martín, N., Quinteiro, M., Seoane, C., Soto, J. L., Mora, A., Suárez, M., Ochoa, E., Morales, A., & Del Bosque, J. R. (1995). Synthesis and conformational study of acridine derivatives related to 1,4-dihydropyridines. Journal of Heterocyclic Chemistry, 32, 235–238. DOI: 10.1002/jhet.5570320139. http://dx.doi.org/10.1002/jhet.557032013910.1002/jhet.5570320139Search in Google Scholar

[16] Nair, V., & Deepthi, A. (2007) Cerium(IV) ammonium nitrate — a versatile single-electron oxidant. Chemical Reviews, 107, 1862–1891. DOI: 10.1021/cr068408n. http://dx.doi.org/10.1021/cr068408n10.1021/cr068408nSearch in Google Scholar PubMed

[17] Ryou, C., Legname, G., Peretz, D., Craig, J. C., Baldwin, M. A., & Prusiner, S. B. (2003). Differential inhibition of prion propagation by enantiomers of quinacrine. Laboratory Investigation, 83, 837–843. DOI: 10.1097/01.LAB.0000074919.08232.A2. 10.1097/01.LAB.0000074919.08232.A2Search in Google Scholar

[18] Shi, D.-Q., Ni, S.-N., Fang-Yang, Shi, J.-W., Dou, G.-L., Li, X.-Y., & Wang, X.-S. (2008). An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid. Journal of Heterocyclic Chemistry, 45, 653–660. DOI:10.1002/jhet.5570450303. http://dx.doi.org/10.1002/jhet.557045030310.1002/jhet.5570450303Search in Google Scholar

[19] Shi, D.-Q., Shi, J.-W., & Yao, H. (2009). Three-component one-pot synthesis of polyhydroacridine derivatives in aqueous media. Synthetic Communications, 39, 664–675. DOI: 10.1080/00397910802431057. http://dx.doi.org/10.1080/0039791080243105710.1080/00397910802431057Search in Google Scholar

[20] Spalding, D. P., Chapin, E. C., & Mosher, H. S. (1954). Heterocyclic basic compounds. XV. Benzacridine derivatives. Journal of Organic Chemistry, 19, 357–364. DOI: 10.1021/jo01368a011. http://dx.doi.org/10.1021/jo01368a01110.1021/jo01368a011Search in Google Scholar

[21] Sridharan, V., & Menéndez, J. C. (2008). Two-step stereocontrolled synthesis of densely functionalized cyclic β-aminoesters containing four stereocenters, based on a new cerium(IV) ammonium nitrate catalyzed sequential threecomponent reaction. Organic Letters, 10, 4303–4306. DOI: 10.1021/ol801738d. http://dx.doi.org/10.1021/ol801738d10.1021/ol801738dSearch in Google Scholar PubMed

[22] Turnbull, S., Tabner, B. J., Brown, D. R., & Allsop, D. (2003). Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106-126. NeuroReport, 14, 1743–1745. http://dx.doi.org/10.1097/00001756-200309150-0001710.1097/00001756-200309150-00017Search in Google Scholar PubMed

[23] Wang, G.-W., & Miao, C.-B. (2006). Environmentally benign one-pot multi-component approaches to the synthesis of novel unsymmetrical 4-arylacridinediones. Green Chemistry, 8, 1080–1085. DOI: 10.1039/b604064k. http://dx.doi.org/10.1039/b604064k10.1039/b604064kSearch in Google Scholar

[24] Wang, X.-S., Shi, D.-Q., Zhang, Y.-F., Wang, S.-H., & Tu, S.-J. (2004). Synthesis of 9-arylpolyhydroacridine in water catalyzed by triethylbenzylammonium chloride (TEBA). Chinese Journal of Organic Chemistry, 24, 430–434. Search in Google Scholar

[25] Zhang, Z.-H., Yin, L., Wang, Y.-M., Liu, J.-Y., & Li, Y. (2004). Indium tribromide in poly(ethylene glycol) (PEG): a novel and efficient recycle system for chemoselective deprotection of 1,1-diacetates. Green Chemistry, 6, 563–565. DOI: 10.1039/b410583d. http://dx.doi.org/10.1039/b410583d10.1039/b410583dSearch in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0070-2/html
Scroll to top button