Abstract
Effect of the addition of six different anions on the absorption and fluorescence spectra of acridine yellow G (AYG) was examined. Only the F− anion could induce a visible color change observable with naked eye and a strong fluorescence quenching with K SV of 8.3 × 104 mol−1 L in CH3CN solutions. Calculated results of the interaction between the F− anion and acridine yellow G using the B3LYP/6-31G(d) program showed that the intermolecular charge transfer through the formation of an H-bond between AYG and F− is an essential sensor mechanism.
[1] Ayling, A. J., Pérez-Payán, M. N., & Davis, A. P. (2001). New “cholapod” anionophores; high-affinity halide receptors derived from cholic acid. Journal of the American Chemical Society, 123, 12716–12717. DOI: 10.1021/ja016796z. http://dx.doi.org/10.1021/ja016796z10.1021/ja016796zSuche in Google Scholar
[2] Barboiu, M., Vaughan, G., & van der Lee, A. (2003). Self-organized heteroditopic macrocyclic superstructures. Organic Letters, 5, 3073–3076. DOI: 10.1021/ol035096r. http://dx.doi.org/10.1021/ol035096r10.1021/ol035096rSuche in Google Scholar
[3] Beer, P. D., & Gale, P. A. (2001). Anion recognition and sensing: The state of the art and future perspectives. Angewandte Chemie International Edition, 40, 486–516. DOI: 10.1002/1521-3773(20010202). http://dx.doi.org/10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-P10.1002/1521-3773(20010202)40:3<486::AID-ANIE486>3.0.CO;2-PSuche in Google Scholar
[4] Bondy, C. R., & Loeb, S. J. (2003). Amide based receptors for anions. Coordination Chemistry Reviews, 240, 77–99. DOI: 10.1016/S0010-8545(02)00304-1. 10.1016/S0010-8545(02)00304-1Suche in Google Scholar
[5] Camiolo, S., Gale, P. A., Hursthouse, M. B., & Light, M. E. (2003). Nitrophenyl derivatives of pyrrole 2,5-diamides: structural behaviour, anion binding and colour change signalled deprotonation. Organic & Biomolecular Chemistry, 1, 741–744. DOI: 10.1039/b210848h. http://dx.doi.org/10.1039/b210848h10.1039/b210848hSuche in Google Scholar
[6] Camiolo, S., Gale, P. A., Hursthouse, M. B., Light, M. E., & Shi, A. J. (2002). Solution and solid-state studies of 3,4-dichloro- 2,5-diamidopyrroles: formation of an unusual anionic narcissistic dimer. Chemical Communications, 2002, 758–759. DOI: 10.1039/b200980c. http://dx.doi.org/10.1039/b200980c10.1039/b200980cSuche in Google Scholar
[7] Chmielewski, M., & Jurczak, J. (2004). Size complementarity in anion recognition by neutral macrocyclic tetraamides. Tetrahedron Letters, 45, 6007–6010. DOI: 10.1016/j.tetlet.2004.06.037. http://dx.doi.org/10.1016/j.tetlet.2004.06.03710.1016/j.tetlet.2004.06.037Suche in Google Scholar
[8] Davis, A. P. (1999). Steroidal guanidinium receptors for the enantioselective recognition of N-acyl α-amino acids. Chemical Communications, 1999, 9–10. DOI: 10.1039/a808245f. http://dx.doi.org/10.1039/a808245f10.1039/a808245fSuche in Google Scholar
[9] Davis, A. P., Perry, J. J., & Williams, R. P. (1997). Anion recognition by tripodal receptors derived from cholic acid. Journal of the American Chemical Society, 119, 1793–1794. DOI: 10.1021/ja9629930. http://dx.doi.org/10.1021/ja962993010.1021/ja9629930Suche in Google Scholar
[10] de Silva, A. P., Fox, D. B., Huxley, A. J. M., & Moody, T. S. (2000). Combining luminescence, coordination and electron transfer for signalling purposes. Coordination Chemistry Reviews, 205, 41–57. DOI: 10.1016/S0010-8545(00)00238-1. http://dx.doi.org/10.1016/S0010-8545(00)00238-110.1016/S0010-8545(00)00238-1Suche in Google Scholar
[11] Esteban-Gómez, D., Fabbrizzi, L., & Licchelli, M. (2005a). Why, on interaction of urea-based receptors with fluoride, beautiful colors develop. The Journal of Organic Chemistry, 70, 5717–5720. DOI: 10.1021/jo050528s. http://dx.doi.org/10.1021/jo050528s10.1021/jo050528sSuche in Google Scholar
[12] Esteban-Gómez, D., Fabbrizzi, L., Licchelli, M., & Sacchi, D. (2005b). A two-channel chemosensor for the optical detection of carboxylic acids, including cholic acid. Journal of Materials Chemistry, 15, 2670–2675. DOI: 10.1039/b502869h. http://dx.doi.org/10.1039/b502869h10.1039/b502869hSuche in Google Scholar
[13] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., W., Ochterski, J., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., & Pople, J. A. (2003). Gaussian 03, Revision B.05 [computer software]. Pittsburgh, PA, USA: Gaussian, Inc. Suche in Google Scholar
[14] Gale, P. A. (2006). Structural and molecular recognition studies with acyclic anion receptors. Accounts of Chemical Research, 39, 465–475. DOI: 10.1021/ar040237q. http://dx.doi.org/10.1021/ar040237q10.1021/ar040237qSuche in Google Scholar
[15] Gale, P. A. (2003). Anion and ion-pair receptor chemistry: Highlights from 2000 and 2001. Coordination Chemistry Reviews, 240, 191–221. DOI: 10.1016/S0010-8545(02)00258-8. 10.1016/S0010-8545(02)00258-8Suche in Google Scholar
[16] Gale, P. A., & Quesada, R. (2006). Anion coordination and anion-templated assembly: Highlights from 2002 to 2004. Coordination Chemistry Reviews, 250, 3219–3244. DOI: 10.1016/j.ccr.2006.05.020. http://dx.doi.org/10.1016/j.ccr.2006.05.02010.1016/j.ccr.2006.05.020Suche in Google Scholar
[17] Gunnlaugsson, T. (2001). A novel Eu(III)-based luminescent chemosensor: determining pH in a highly acidic environment. Tetrahedron Letters, 42, 8901–8905. DOI: 10.1016/S0040-4039(01)01935-9. http://dx.doi.org/10.1016/S0040-4039(01)01935-910.1016/S0040-4039(01)01935-9Suche in Google Scholar
[18] Gunnlaugsson, T., Davis, A. P., Hussey, G. M., Tierney, J., & Glynn, M. (2004). Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors. Organic & Biomolecular Chemistry, 2, 1856–1863. DOI: 10.1039/b404706k. http://dx.doi.org/10.1039/b404706k10.1039/b404706kSuche in Google Scholar PubMed
[19] Gunnlaugsson, T., Glynn, M., Tocci, G. M., Kruger, P. E., & Pfeffer, F. M. (2006). Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coordination Chemistry Reviews, 250, 3094–3117. DOI: 10.1016/j.ccr.2006.08.017. http://dx.doi.org/10.1016/j.ccr.2006.08.01710.1016/j.ccr.2006.08.017Suche in Google Scholar
[20] Gunnlaugsson, T., Kruger, P. E., Jensen, P., Pfeffer, F. M., & Hussey, G. M. (2003). Simple naphthalimide based anion sensors: deprotonation induced colour changes and CO2 fixation. Tetrahedron Letters, 44, 8909–8913. DOI: 10.1016/j.tetlet.2003.09.148. http://dx.doi.org/10.1016/j.tetlet.2003.09.14810.1016/j.tetlet.2003.09.148Suche in Google Scholar
[21] Gunnlaugsson, T., Kruger, P. E., Jensen, P., Tierney, J., Ali, H. D. P., & Hussey, G. M. (2005). Colorimetric “naked eye” sensing of anions in aqueous solution. Journal of Organic Chemistry, 70, 10875–10878. DOI: 10.1021/jo0520487. http://dx.doi.org/10.1021/jo052048710.1021/jo0520487Suche in Google Scholar PubMed
[22] Gunnlaugsson, T., Mac Dónaill, D. A., & Parker, D. (2001). Lanthanide macrocyclic quinolyl conjugates as luminescent molecular-level devices. Journal of the American Chemical Society, 123, 12866–12876. DOI: 10.1021/ja004316i. http://dx.doi.org/10.1021/ja004316i10.1021/ja004316iSuche in Google Scholar
[23] Gunnlaugsson, T., Nieuwenhuyzen, M., Richard, L., & Thoss, V. (2002). Novel sodium-selective fluorescent PET and optically based chemosensors: towards Na+ determination in serum. Journal of Chemical Society, Perkin Transactions, 2, 141–150. DOI: 10.1039/b106474f. 10.1039/b106474fSuche in Google Scholar
[24] Hettche, F., & Hoffmann, R. W. (2003). A tri-armed sulfonamide host for selective binding of chloride. New Journal of Chemistry, 27, 172–177. DOI: 10.1039/b206125m. http://dx.doi.org/10.1039/b206125m10.1039/b206125mSuche in Google Scholar
[25] Kang, S. O., Hossain, M. A., & Bowman-James, K. (2006). Influence of dimensionality and charge on anion binding in amide-based macrocyclic receptors. Coordination Chemistry Reviews, 250, 3038–3052. DOI: 10.1016/j.ccr.2006.06.006. http://dx.doi.org/10.1016/j.ccr.2006.06.00610.1016/j.ccr.2006.06.006Suche in Google Scholar
[26] Katayev, E. A., Sessler, J. L., Khrustalev, V. N., & Ustynyuk, Y. A. (2007). Synthetic model of the phosphate binding protein: solid-state structure and solution-phase anion binding properties of a large oligopyrrolic macrocycle. The Journal of Organic Chemistry, 72, 7244–7252. DOI: 10.1021/jo071106g. http://dx.doi.org/10.1021/jo071106g10.1021/jo071106gSuche in Google Scholar
[27] Kim, S. H., Kim, J. S., Park, S. M., & Chang, S. K. (2006). Hg2+-selective OFF-ON and Cu2+-selective ON-OFF type fluoroionophore based upon cyclam. Organic Letters, 8, 371–374. DOI: 10.1021/ol052282j. http://dx.doi.org/10.1021/ol052282j10.1021/ol052282jSuche in Google Scholar
[28] Kondo, S., Hiraoka, Y., Kurumatani, N., & Yano, Y. (2005). Selective recognition of dihydrogen phosphate by receptors bearing pyridyl moieties as hydrogen bond acceptors. Chemical Communications, 2005, 1720–1722. DOI: 10.1039/b417304j. http://dx.doi.org/10.1039/b417304j10.1039/b417304jSuche in Google Scholar
[29] Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy (2nd ed.). New York, NY, USA: Plenum Press. 10.1007/978-1-4757-3061-6Suche in Google Scholar
[30] Lee, D. H., Lee, H. Y., & Hong, J.-I. (2002). Anion sensor based on the indoaniline-thiourea system. Tetrahedron Letters, 43, 7273–7276. DOI: 10.1016/S0040-4039(02)01455-7. http://dx.doi.org/10.1016/S0040-4039(02)01455-710.1016/S0040-4039(02)01455-7Suche in Google Scholar
[31] Lee, C., Miyaji, H., Yoon, D., & Sessler, J. L. (2008). Strapped and other topographically nonplanar calixpyrrole analogues. Improved anion receptors. Chemical Communications, 2008, 24–34. DOI: 10.1039/b713183f. http://dx.doi.org/10.1039/b713183f10.1039/B713183FSuche in Google Scholar
[32] Liao, J.-H., Chen, C.-T., & Fang, J.-M. (2002). A novel phosphate chemosensor utilizing anion induced fluorescence change. Organic Letters, 4, 561–564. DOI: 10.1021/ol0171564. http://dx.doi.org/10.1021/ol017156410.1021/ol0171564Suche in Google Scholar
[33] Liu, B., & Tian, H. (2005). A ratiometric fluorescent chemosensor for fluoride ions based on a proton transfer signaling mechanism. Journal of Materials Chemistry, 15, 2681–2686. DOI: 10.1039/b501234a. http://dx.doi.org/10.1039/b501234a10.1039/b501234aSuche in Google Scholar
[34] Luxami, V., Sharma, N., & Kumar, S. (2008). Quaternary ammonium salt-based chromogenic and fluorescent chemosensors for fluoride ions. Tetrahedron Letters, 49, 4265–4268. DOI: 10.1016/j.tetlet.2008.04.147. http://dx.doi.org/10.1016/j.tetlet.2008.04.14710.1016/j.tetlet.2008.04.147Suche in Google Scholar
[35] Mikláš, R., Kasák, P., Devínsky, F., & Putala, M. (2009). Fluoride anion sensing using colorimetric reagents containing binaphthyl moiety and urea binding site. Chemical Papers, 63, 709–715. DOI: 10.2478/s11696-009-0079-6. http://dx.doi.org/10.2478/s11696-009-0079-610.2478/s11696-009-0079-6Suche in Google Scholar
[36] Miyaji, H., & Sessler, J. L. (2001). Off-the-shelf colorimetric anion sensors. Angewandte Chemie International Edition, 40, 154–157. DOI: 10.1002/1521-3773. http://dx.doi.org/10.1002/1521-3773(20010105)40:1<154::AID-ANIE154>3.0.CO;2-G10.1002/1521-3773(20010105)40:1<154::AID-ANIE154>3.0.CO;2-GSuche in Google Scholar
[37] Peng, X., Wu, Y., Fan, J., Tian, M., & Han, K. (2005). Colorimetric and ratiometric fluorescence sensing of fluoride: Tuning selectivity in proton transfer. Journal of Organic Chemistry, 70, 10524–10531. DOI: 10.1021/jo051766q. http://dx.doi.org/10.1021/jo051766q10.1021/jo051766qSuche in Google Scholar
[38] Rurack, K., & Resch-Genger, U. (2002). Rigidization, preorientation and electronic decoupling—the magic triangle for the design of highly efficient fluorescent sensors and switches. Chemical Society Reviews, 31, 116–127. DOI: 10.1039/b100604p. http://dx.doi.org/10.1039/b100604p10.1039/b100604pSuche in Google Scholar
[39] Sessler, J. L., Cho, W.-S., Gross, D. E., Shriver, J. A., Lynch, V. M., & Marquez, M. (2005). Anion binding studies of fluorinated expanded calixpyrroles. The Journal of Organic Chemistry, 70, 5982–5986. DOI: 10.1021/jo050662c. http://dx.doi.org/10.1021/jo050662c10.1021/jo050662cSuche in Google Scholar
[40] Sessler, J. L., Gross, D. E., Cho, W.-S., Lynch, V. M., Schmidtchen, F. P., & Bates, G.W. (2006). Calix[4]pyrrole as a chloride anion receptor: solvent and countercation effects. Journal of the American Chemical Society, 128, 12281–12288. DOI: 10.1021/ja064012h. http://dx.doi.org/10.1021/ja064012h10.1021/ja064012hSuche in Google Scholar
[41] Suksai, C., & Tuntulani, T. (2003). Chromogenic anion sensors. Chemical Society Reviews, 32, 192–202. DOI: 10.1039/b209598j. http://dx.doi.org/10.1039/b209598j10.1039/b209598jSuche in Google Scholar
[42] Tseng, Y., Tu, G., Lin, C., Chang, C., Lin, C., & Yen, Y. (2007). Synthesis of colorimetric sensors for isomeric dicarboxylate anions: selective discrimination between maleate and fumarate. Organic & Biomolecular Chemistry, 5, 3592–3598. DOI: 10.1039/b710695e. http://dx.doi.org/10.1039/b710695e10.1039/b710695eSuche in Google Scholar PubMed
[43] Yen, Y.-P., & Ho, K.-W. (2006). Synthesis of colorimetric receptors for dicarboxylate anions: a unique color change for malonate. Tetrahedron Letters, 47, 1193–1196. DOI: 10.1016/j.tetlet.2005.12.009. http://dx.doi.org/10.1016/j.tetlet.2005.12.00910.1016/j.tetlet.2005.12.009Suche in Google Scholar
© 2010 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Artikel in diesem Heft
- Chemical conjugation of biomacromolecules: A mini-review
- Talaromyces flavus and its metabolites
- Application of non-steroidal anti-inflammatory drugs for palladium determination
- A naked-eye, selective and sensitive chemosensor for fluoride ion
- Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
- The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
- Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
- Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
- Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
- Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
- Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
- Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
- Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
- Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
- Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
- ZnO nanoparticles in the synthesis of AB ring core of camptothecin
- Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
- Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate