Home Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
Article
Licensed
Unlicensed Requires Authentication

Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water

  • Budimir Marjanović EMAIL logo , Ivan Juranić , Slavko Mentus , Gordana Ćirić-Marjanović and Petr Holler
Published/Copyright: September 23, 2010
Become an author with De Gruyter Brill

Abstract

Anilinium 5-sulfosalicylate was prepared and characterized by elemental analysis, and FTIR and NMR spectroscopies. It was polymerized in an aqueous solution using ammonium peroxydisulfate as an oxidant. The precipitated polyaniline 5-sulfosalicylate exhibited high thermal stability and conductivity of 0.13 S cm−1. Its mass-average molar mass and polydispersity index were determined by gel-permeation chromatography as 22,900 g mol−1 and 2.7, respectively. Elemental analysis and FTIR spectroscopy study of polyaniline 5-sulfosalicylate revealed the doping level and the oxidation state between emeraldine and protoemeraldine salt while corresponding studies of the polyaniline base indicate a small extent of the covalent bonding of 5-sulfosalicylate anions to polyaniline chains.

[1] Butler, R. A., & Bates, R. G. (1976). Double potassium salt of sulfosalicylic acid in acidimetry and pH control. Analytical Chemistry, 48, 1669–1671. DOI: 10.1021/ac50006a011. http://dx.doi.org/10.1021/ac50006a01110.1021/ac50006a011Search in Google Scholar

[2] Ćirić-Marjanović, G., Dondur, V., Milojević, M., Mojović, M., Mentus, S., Radulović, A., Vuković, Z., & Stejskal, J. (2009a). Synthesis and characterization of conducting self-assembled polyaniline nanotubes/zeolite nanocomposite. Langmuir, 25, 3122–3131. DOI: 10.1021/la8030396. http://dx.doi.org/10.1021/la803039610.1021/la8030396Search in Google Scholar

[3] Ćirić-Marjanović, G., Dragičević, Lj., Milojević, M., Mojović, M., Mentus, S., Dojčinović, B., Marjanović, B., & Stejskal, J. (2009b). Synthesis and characterization of self-assembled polyaniline nanotubes/silica nanocomposites. The Journal of Physical Chemistry B, 113, 7116–7127. DOI: 10.1021/jp900096b. http://dx.doi.org/10.1021/jp900096b10.1021/jp900096bSearch in Google Scholar

[4] Ćirić-Marjanović, G., Janošević, A., Marjanović, B., Trchova, M., Stejskal, J., & Holler, P. (2007). Chemical oxidative polymerization of dianilinium 5-sulfosalicylate. Russian Journal of Physical Chemistry A, Focus on Chemistry, 81, 1418–1424. DOI: 10.1134/S0036024407090130. http://dx.doi.org/10.1134/S003602440709013010.1134/S0036024407090130Search in Google Scholar

[5] Ćirić-Marjanović, G., Konyushenko, E. N., Trchova, M., & Stejskal, J. (2008a). Chemical oxidative polymerization of anilinium sulfate versus aniline: Theory and experiment. Synthetic Metals, 158, 200–211. DOI:10.1016/j.synthmet.2008.01.005. http://dx.doi.org/10.1016/j.synthmet.2008.01.00510.1016/j.synthmet.2008.01.005Search in Google Scholar

[6] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2008b). Theoretical study of the oxidative polymerization of aniline with peroxydisulfate: Tetramer formation. International Journal of Quantum Chemistry, 108, 318–333. DOI: 10.1002/qua.21506. http://dx.doi.org/10.1002/qua.2150610.1002/qua.21506Search in Google Scholar

[7] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2008c). The chemical oxidative polymerization of aniline in water: Raman spectroscopy. Journal of Raman Spectroscopy, 39, 1375–1387. DOI:10.1002/jrs.2007. http://dx.doi.org/10.1002/jrs.200710.1002/jrs.2007Search in Google Scholar

[8] Ćirić-Marjanović, G., Trchova, M., & Stejskal, J. (2006a). MNDO-PM3 Study of the early stages of the chemical oxidative polymerization of aniline. Collection of Czechoslovak Chemical Communications, 71, 1407–1426. DOI:10.1135/cccc20061407. http://dx.doi.org/10.1135/cccc2006140710.1135/cccc20061407Search in Google Scholar

[9] Ćirić-Marjanović, G. N., Marjanović, B. N., Popović, M. M., Panić, V. V., & Mišković-Stanković, V. B. (2006b). Anilinium 5-sulfosalicylate electropolymerization on mild steel from an aqueous solution of sodium 5-sulfosalicylate/disodium 5-sulfosalicylate. Russian Journal of Electrochemistry, 42, 1358–1364. DOI:10.1134/S1023193506120147. http://dx.doi.org/10.1134/S102319350612014710.1134/S1023193506120147Search in Google Scholar

[10] Gospodinova, N., & Terlemezyan, L. (1998). Conducting polymers prepared by oxidative polymerization: polyaniline. Progress in Polymer Science, 23, 1443–1484. DOI: 10.1016/S0079-6700(98)00008-2. http://dx.doi.org/10.1016/S0079-6700(98)00008-210.1016/S0079-6700(98)00008-2Search in Google Scholar

[11] Ha, J., & Jang, J. (2005). Chemical synthesis of highly conductive polyaniline nanoparticles and applications for magnetic carbon nanomaterials. Applied Chemistry, 9, 73–76. Search in Google Scholar

[12] Janošević, A., Ćirić-Marjanović, G., Marjanović, B., Holler, P., Trchova, M., & Stejskal, J. (2008). Synthesis and characterization of conducting polyaniline 5-sulfosalicylate nanotubes. Nanotechnology, 19, 135606. DOI: 10.1088/0957-4484/19/13/135606. http://dx.doi.org/10.1088/0957-4484/19/13/13560610.1088/0957-4484/19/13/135606Search in Google Scholar

[13] Konyushenko, E. N., Stejskal, J., Šeděnkova, I., Trchova, M., Sapurina, I., Cieslar, M., & Prokeš, J. (2006). Polyaniline nanotubes: conditions of formation. Polymer International, 55, 31–39. DOI:10.1002/pi.1899. http://dx.doi.org/10.1002/pi.189910.1002/pi.1899Search in Google Scholar

[14] Konyushenko, E. N., Trchova, M., Stejskal, J., & Sapurina, I. (2010). The role of acidity profile in the nanotubular growth of polyaniline. Chemical Papers, 64, 56–64. DOI: 10.2478/s11696-009-0101-z. http://dx.doi.org/10.2478/s11696-009-0101-z10.2478/s11696-009-0101-zSearch in Google Scholar

[15] Lee, K., Cho, S., Park, S. H., Heeger, A. J., Lee, C.-W., & Lee, S.-H. (2006). Metallic transport in polyaniline. Nature, 441, 65–68. DOI: 10.1038/nature04705. http://dx.doi.org/10.1038/nature0470510.1038/nature04705Search in Google Scholar

[16] MacDiarmid, A. G., & Epstein, A. J. (1995). Secondary doping in polyaniline. Synthetic Metals, 69, 85–92. DOI: 10.1016/0379-6779(94)02374-8. http://dx.doi.org/10.1016/0379-6779(94)02374-810.1016/0379-6779(94)02374-8Search in Google Scholar

[17] MacDiarmid, A. G., Jones, W. E., Jr., Norris, I. D., Gao, J., Johnson, A. T., Jr., Pinto, N. J., Hone, J., Han, B., Ko, F. K., Okuzaki, H., & Llaguno, M. (2001). Electrostatically-generated nanofibers of electronic polymers. Synthetic Metals, 119, 27–30. DOI: 10.1016/S0379-6779(00)00597-X. http://dx.doi.org/10.1016/S0379-6779(00)00597-X10.1016/S0379-6779(00)00597-XSearch in Google Scholar

[18] Neoh, K. G., Pun, M. Y., Kang, E. T., & Tan, K. L. (1995). Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Metals, 73, 209–215. DOI: 10.1016/0379-6779(95)80018-2. http://dx.doi.org/10.1016/0379-6779(95)80018-210.1016/0379-6779(95)80018-2Search in Google Scholar

[19] Palaniappan, S., John, A., Amarnath, C. A., & Rao, V. J. (2004). Mannich-type reaction in solvent free condition using reusable polyaniline catalyst. Journal of Molecular Catalysis A: Chemical, 218, 47–53. DOI:10.1016/j.molcata.2004.04.010. http://dx.doi.org/10.1016/j.molcata.2004.04.01010.1016/j.molcata.2004.04.010Search in Google Scholar

[20] Raghunathan, A., Rangarajan, G., & Trivedi, D. C. (1996). 13C CPMAS NMR, XRD, d.c. and a.c. electrical conductivity of aromatic acids doped polyaniline. Synthetic Metals, 81, 39–47. DOI: 10.1016/0379-6779(96)80227-X. http://dx.doi.org/10.1016/0379-6779(96)80227-X10.1016/0379-6779(96)80227-XSearch in Google Scholar

[21] Smith, G., Wermuth, U. D., & Healy, P. C. (2005). Layered structures in proton-transfer compounds of 5-sulfosalicylic acid with the aromatic polyamines 2,6-diaminopyridine and 1,4-phenylenediamine. Acta Crystallographica Section C, 61, o555–o558. DOI: 10.1107/S010827010502439X. http://dx.doi.org/10.1107/S010827010502439X10.1107/S010827010502439XSearch in Google Scholar PubMed

[22] Smith, G., Wermuth, U. D., & White, J. M. (2004). Hydrogen bonding in proton-transfer compounds of 5-sulfosalicylic acid with bicyclic heteroaromatic Lewis bases. Acta Crystallographica Section C, 60, o575–o581. DOI: 10.1107/S010827010401457X. http://dx.doi.org/10.1107/S010827010401457X10.1107/S010827010401457XSearch in Google Scholar

[23] Stejskal, J., & Gilbert, R. G. (2002), Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure and Applied Chemistry, 74, 857–867. DOI:10.1351/pac200274050857. 10.1351/pac200274050857Search in Google Scholar

[24] Stejskal, J., Hlavata, D., Holler, P., Trchova, M., Prokeš, J., & Sapurina, I. (2004). Polyaniline prepared in the presence of various acids: a conductivity study. Polymer International, 53, 294–300. DOI: 10.1002/pi.1406. http://dx.doi.org/10.1002/pi.140610.1002/pi.1406Search in Google Scholar

[25] Stejskal, J., Kratochvil, P., & Jenkins, A. D. (1996). The formation of polyaniline and the nature of its structures. Polymer, 37, 367–369. DOI: 10.1016/0032-3861(96)81113-X. http://dx.doi.org/10.1016/0032-3861(96)81113-X10.1016/0032-3861(96)81113-XSearch in Google Scholar

[26] Stejskal, J., Sapurina, I., Trchova, M., Konyushenko, E. N., & Holler, P. (2006). The genesis of polyaniline nanotubes. Polymer, 47, 8253–8262. DOI:10.1016/j.polymer.2006.10.007. http://dx.doi.org/10.1016/j.polymer.2006.10.00710.1016/j.polymer.2006.10.007Search in Google Scholar

[27] Stejskal, J., Trchova, M., Brožova, L., & Prokeš, J. (2009). Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chemical Papers, 63, 77–83. DOI: 10.2478/s11696-008-0086-z. http://dx.doi.org/10.2478/s11696-008-0086-z10.2478/s11696-008-0086-zSearch in Google Scholar

[28] Stejskal, J., Trchova, M., Kovařova, J., Prokeš, J., & Omastova, M. (2008). Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chemical Papers, 62, 181–186. DOI: 10.2478/s11696-008-0009-z. http://dx.doi.org/10.2478/s11696-008-0009-z10.2478/s11696-008-0009-zSearch in Google Scholar

[29] Tawde, S., Mukesh, D., & Yakhmi, J. V. (2002). Redox behavior of polyaniline as influenced by aromatic sulphonate anions: cyclic voltammetry and molecular modeling. Synthetic Metals, 125, 401–413. DOI: 10.1016/S0379-6779(01)00483-0. http://dx.doi.org/10.1016/S0379-6779(01)00483-010.1016/S0379-6779(01)00483-0Search in Google Scholar

[30] Trchova, M., Šeděnkova, I., Konyushenko, E. N., Stejskal, J., Holler, P., & Ćirić-Marjanović, G. (2006). Evolution of polyaniline nanotubes: The oxidation of aniline in water. The Journal of Physical Chemistry B, 110, 9461–9468. DOI:10.1021/jp057528g. http://dx.doi.org/10.1021/jp057528g10.1021/jp057528gSearch in Google Scholar

[31] Trivedi, D. C., & Dhawan, S. K. (1993). Investigations on the effect of 5-sulfosalicylic acid on the properties of polyaniline. Synthetic Metals, 58, 309–324. DOI: 10.1016/0379-6779(93)91140-W. http://dx.doi.org/10.1016/0379-6779(93)91140-W10.1016/0379-6779(93)91140-WSearch in Google Scholar

Published Online: 2010-9-23
Published in Print: 2010-12-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Chemical conjugation of biomacromolecules: A mini-review
  2. Talaromyces flavus and its metabolites
  3. Application of non-steroidal anti-inflammatory drugs for palladium determination
  4. A naked-eye, selective and sensitive chemosensor for fluoride ion
  5. Determination of catechin and epicatechin in the peel of apple varieties resistant and non-resistant to apple scab
  6. The use of sulfated tin oxide as solid superacid catalyst for heterogeneous transesterification of Jatropha curcas oil
  7. Effect of pH and washing on calcium and magnesium distribution between pulp and filtrate
  8. Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen-ozone evolution reactions
  9. Synthesis of methyl acetoacetate from acetone and dimethyl carbonate with alkali-promoted MgO catalysts
  10. Synthesis, crystal structure, and 1H NMR spectra of a chloride-bridged chain complex of dinuclear ruthenium(II,III) 3,4,5-tri(ethoxy-d 5)benzoate
  11. Modification of poly(vinyl alcohol) membrane via blending with poly(γ-benzyl l-glutamate)-block-poly(ethylene glycol) copolymer
  12. Oxidative polymerization of anilinium 5-sulfosalicylate with peroxydisulfate in water
  13. Morphological patterns of poly(N-isopropylacrylamide) derivatives synthesized with EGDMA, DEGDMA, and TEGDMA crosslinkers for application as thermosensitive drug carriers
  14. Influence of a Fe/activated carbon catalyst and reaction parameters on methane decomposition during the synthesis of carbon nanotubes
  15. Microwave assisted one pot synthesis of 7-substituted 2-(2-oxo-2H-chromen-3-yl)acetic acids as precursors of new anti-tumour compounds
  16. ZnO nanoparticles in the synthesis of AB ring core of camptothecin
  17. Novel benzopyranopyridine derivatives of 2-amino-3-formylchromone
  18. Polyethylene glycol-mediated synthesis of decahydroacridine-1,8-diones catalyzed by ceric ammonium nitrate
Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-010-0064-0/html
Scroll to top button