Startseite Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study

  • Alberto Alberti EMAIL logo , Ilaria Parodi , Giuseppe Cruciani , Maria Chiara Dalconi und Annalisa Martucci
Veröffentlicht/Copyright: 2. April 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The dehydration-rehydration process in gmelinite-Na |Na7.27K0.28Ca0.15(H2O)21.85|[Al7.71Si17.24O48]- GME, a natural zeolite that can be described as a parallel stacking of double six rings of tetrahedra in the AABB sequence, was studied by X-ray diffraction data. Its space group is P63/mmc with a = 13.764(1) and c = 10.078(1) Å cell parameters. Single-crystal data collections were performed at room conditions and at increasing temperatures, in a hot nitrogen stream, up to the fragmentation of the crystals, which occurs at a temperature as low as 100 °C, and afterward the crystal was cooled down to room conditions. X-ray powder diffraction data showed that gmelinite-Na transforms into a new structure with an AFI-type topology at about 300 °C. At room conditions, extraframework cations are located in two symmetrically independent positions, both of which are coordinated to either framework O atoms or water molecules. When the mineral is heated to 90 °C, about 40% of H2O is lost, and one cation site splits over two positions, which are three-coordinated to the framework O atoms. The dehydration process is completely reversible over a period of hours. X-ray single-crystal data has highlighted that gmelinite-Na when quenched at 100 K displays remarkable modifications in its extraframework content, resulting in a strong disorder in its extraframework ions. As in the case of heating, the mineral restores its structural features when brought back to room temperature.

Received: 2009-10-13
Accepted: 2010-6-20
Published Online: 2015-4-2
Published in Print: 2010-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Artikel in diesem Heft

  1. Characterization of cation environments in polycrystalline forsterite by 25Mg MAS, MQMAS, and QCPMG NMR
  2. Structure of nanocrystalline phyllomanganates produced by freshwater fungi
  3. First-principles study on variation of lattice parameters of mullite Al4+2xSi2–2xO10–x (x = 0.125, 0.250, 0.375)
  4. Natrolite may not be a “soda-stone” anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite
  5. Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K.
  6. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series
  7. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy)
  8. Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content
  9. Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing
  10. H2O and the dehydroxylation of phyllosilicates: An infrared spectroscopic study
  11. Effects of intermediate range structure on the 29Si NMR chemical shifts of framework silicates: Results for analcime
  12. High-temperature Mössbauer spectroscopy: A probe for the relaxation time of Fe species in silicate melts and glasses
  13. The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures
  14. OH species, U ions, and CO/CO2 in thermally annealed metamict zircon (ZrSiO4)
  15. Crystallographic and chemical constraints on the nature of the proustite–pyrargyrite solid-solution series
  16. Accurate μRaman characterization of reaction products at the surface of (bio)oxidized pyrite
  17. Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy
  18. AFM study of the epitaxial growth of brushite (CaHPO4·2H2O) on gypsum cleavage surfaces
  19. Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite
  20. Crystal structure of hydrous wadsleyite with 2.8% H2O and compressibility to 60 GPa
  21. Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study
  22. Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution
  23. Mechanism of metamorphic zircon growth in a granulite-facies quartzite, Adirondack Highlands, Grenville Province, New York
  24. Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure
  25. A critical comment on Thy et al. (2009b): Liquidus temperatures of the Skaergaard magma
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3419/html
Button zum nach oben scrollen