Home Physical Sciences Structure of nanocrystalline phyllomanganates produced by freshwater fungi
Article
Licensed
Unlicensed Requires Authentication

Structure of nanocrystalline phyllomanganates produced by freshwater fungi

  • Sylvain Grangeon EMAIL logo , Bruno Lanson , Naoyuki Miyata , Yukinori Tani and Alain Manceau
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

The crystal structures of biogenic Mn oxides produced by three fungal strains isolated from stream pebbles were determined using chemical analyses, XANES and EXAFS spectroscopy, and powder X-ray diffraction. The fungi-mediated oxidation of aqueous Mn2+ produces layered Mn oxides analogous to vernadite, a natural nanostructured and turbostratic variety of birnessite. The crystallites have domain dimensions of ~10 nm in the layer plane (equivalent to ~35 MnO6 octahedra), and ~1.5-2.2 nm perpendicularly (equivalent to ~2-3 layers), on average. The layers have hexagonal symmetry and from 22 to 30% vacant octahedral sites. This proportion likely includes edge sites, given the extremely small lateral size of the layers. The layer charge deficit, resulting from the missing layer Mn4+ cations, is balanced mainly by interlayer Mn3+ cations in triple-corner sharing position above and/or below vacant layer octahedra. The high surface area, defective crystal structure, and mixed Mn valence confer to these bio-minerals an extremely high chemical reactivity. They serve in the environment as sorption substrate for trace elements and possess catalytic redox properties.

Received: 2010-2-1
Accepted: 2010-6-29
Published Online: 2015-4-2
Published in Print: 2010-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Characterization of cation environments in polycrystalline forsterite by 25Mg MAS, MQMAS, and QCPMG NMR
  2. Structure of nanocrystalline phyllomanganates produced by freshwater fungi
  3. First-principles study on variation of lattice parameters of mullite Al4+2xSi2–2xO10–x (x = 0.125, 0.250, 0.375)
  4. Natrolite may not be a “soda-stone” anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite
  5. Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K.
  6. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series
  7. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy)
  8. Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content
  9. Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing
  10. H2O and the dehydroxylation of phyllosilicates: An infrared spectroscopic study
  11. Effects of intermediate range structure on the 29Si NMR chemical shifts of framework silicates: Results for analcime
  12. High-temperature Mössbauer spectroscopy: A probe for the relaxation time of Fe species in silicate melts and glasses
  13. The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures
  14. OH species, U ions, and CO/CO2 in thermally annealed metamict zircon (ZrSiO4)
  15. Crystallographic and chemical constraints on the nature of the proustite–pyrargyrite solid-solution series
  16. Accurate μRaman characterization of reaction products at the surface of (bio)oxidized pyrite
  17. Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy
  18. AFM study of the epitaxial growth of brushite (CaHPO4·2H2O) on gypsum cleavage surfaces
  19. Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite
  20. Crystal structure of hydrous wadsleyite with 2.8% H2O and compressibility to 60 GPa
  21. Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study
  22. Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution
  23. Mechanism of metamorphic zircon growth in a granulite-facies quartzite, Adirondack Highlands, Grenville Province, New York
  24. Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure
  25. A critical comment on Thy et al. (2009b): Liquidus temperatures of the Skaergaard magma
Downloaded on 9.2.2026 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3516/html
Scroll to top button