Home Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite
Article
Licensed
Unlicensed Requires Authentication

Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite

  • P.F. Zanazzi EMAIL logo , F. Nestola and D. Pasqual
Published/Copyright: April 2, 2015
Become an author with De Gruyter Brill

Abstract

The high-pressure behavior of protoamphibole (space group Pnmn) was studied by in situ singlecrystal X-ray diffraction on a sample of protomangano-ferro-anthophyllite with formula (Mn1.39Fe0.59) (Fe3.98Mg1.02)Si8O22(OH)2, from Yokone-Yama, Awano Town, Tochigi Prefecture, Japan. Unit-cell parameters were collected at various pressures up to 9 GPa, and structural refinements were obtained from data collected at several pressures up to 7 GPa. Fitting the P-V data to a third-order Birch- Murnaghan equation of state (EoS) gives the following parameters: KT0 = 64(1) GPa, K′ = 7.0(4), and V0 = 926.4(4) Å3. Axial moduli are: K0a = 30.7(8) GPa, K′a = 10.8(5), and a0 = 9.430(2) Å; K0b = 109(4) GPa, K′b = 2.7(8), and b0 = 18.364(4) Å; K0c = 94(5), GPa, K′c = 4(1), and c0 = 5.354(2) Å. The corresponding axial compressibilities (10-3 GPa-1) are βa = 10.9(3), βb = 3.1(1), and βc = 3.5(2), and indicate that the HP behavior of protomangano-ferro-anthophyllite is highly anisotropic, the highest compressibility being along [100]. No discontinuous behavior or polymorphic transitions were observed in the pressure range studied.

Structural refinements show that M1, M2, and M3 polyhedra have similar compressibilities, owing to their similar composition. M4 (72% Mn, 28% Fe) is a highly distorted site and is slightly softer than the other octahedra. The major movements in the tetrahedral ribbon concern kinking of the double chain, bending along the [100] direction through the empty A site, and tetrahedral rotation, necessary to maintain coherence with the octahedral layer. The kinking angle of O5-O6-O5, which in air is 179.1(2)°, decreases to 174(2)° at 6.9 GPa. The T1-O7-T1 angle changes from 143.8(3)° to 134(5)° at 6.9 GPa, and the tetrahedral rotation α increases from 0.2(2)° to 4(2)°.

Received: 2010-3-23
Accepted: 2010-6-20
Published Online: 2015-4-2
Published in Print: 2010-11-1

© 2015 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. Characterization of cation environments in polycrystalline forsterite by 25Mg MAS, MQMAS, and QCPMG NMR
  2. Structure of nanocrystalline phyllomanganates produced by freshwater fungi
  3. First-principles study on variation of lattice parameters of mullite Al4+2xSi2–2xO10–x (x = 0.125, 0.250, 0.375)
  4. Natrolite may not be a “soda-stone” anymore: Structural study of fully K-, Rb-, and Cs-exchanged natrolite
  5. Metal retention, mineralogy, and design considerations of a mature permeable reactive barrier (PRB) for acidic mine water drainage in Northumberland, U.K.
  6. A relationship between d104 value and composition in the calcite-disordered dolomite solid-solution series
  7. XRD, micro-XANES, EMPA, and SIMS investigation on phlogopite single crystals from Mt. Vulture (Italy)
  8. Volume behavior of the 10 Å phase at high pressures and temperatures, with implications for H2O content
  9. Interfacial tension between immiscible liquids in the system K2O-FeO-Fe2O3-Al2O3-SiO2 and implications for the kinetics of silicate melt unmixing
  10. H2O and the dehydroxylation of phyllosilicates: An infrared spectroscopic study
  11. Effects of intermediate range structure on the 29Si NMR chemical shifts of framework silicates: Results for analcime
  12. High-temperature Mössbauer spectroscopy: A probe for the relaxation time of Fe species in silicate melts and glasses
  13. The thermal equation of state of FeTiO3 ilmenite based on in situ X-ray diffraction at high pressures and temperatures
  14. OH species, U ions, and CO/CO2 in thermally annealed metamict zircon (ZrSiO4)
  15. Crystallographic and chemical constraints on the nature of the proustite–pyrargyrite solid-solution series
  16. Accurate μRaman characterization of reaction products at the surface of (bio)oxidized pyrite
  17. Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy
  18. AFM study of the epitaxial growth of brushite (CaHPO4·2H2O) on gypsum cleavage surfaces
  19. Compressibility of protoamphibole: A high-pressure single-crystal diffraction study of protomangano-ferro-anthophyllite
  20. Crystal structure of hydrous wadsleyite with 2.8% H2O and compressibility to 60 GPa
  21. Dehydration and rehydration processes in gmelinite: An in situ X-ray single-crystal study
  22. Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution
  23. Mechanism of metamorphic zircon growth in a granulite-facies quartzite, Adirondack Highlands, Grenville Province, New York
  24. Speciation and mixing behavior of silica-saturated aqueous fluid at high temperature and pressure
  25. A critical comment on Thy et al. (2009b): Liquidus temperatures of the Skaergaard magma
Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am.2010.3565/html
Scroll to top button