Startseite A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications

  • Mohammad Alauddin und Mazharul M. Islam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 5. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Very recently, N-heterocyclic carbenes (NHCs) have found a wide range of applications in the fields of catalysis and nonlinear optics. Herein, we have employed 1,3-bis-(1(S)-benzyl)-4,5-dihydro-imidazol-based carbene as a reference molecule and substituted one H atom from each CH2 of the benzyl groups in both sides by CH3, NH2, and CF3 to study the thermodynamic and opto-electronic properties of NHCs theoretically. It was observed that the enthalpy (H), Gibb’s free energy (G), specific heat capacity (C v), and entropy (S) increase significantly in the presence of the electron-withdrawing groups compared to the electron-donating groups. The IR active in-plane bending vibrations of the CH (NHC) group are shifted to the higher frequency region for the considered substituted molecules compared to the reference carbene. The analysis of the electronic properties shows that the CH3-substituted carbene is more reactive for catalytic activities compared to other NHCs. The calculated nonlinear optical (NLO) properties reveal that the NH2-substituted NHC has the largest hyperpolarizability value whereas the CH3-substituted NHC has the largest dipole moment and polarizability among all, making them potential candidates for the development of NLO materials.


Corresponding author: Mazharul M. Islam, Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr, 12, Bonn 53115, Germany; and School of Chemistry, Cardiff Catalysis Institute, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, UK, E-mail:
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.

Funding source: Rheinische Friedrich-Wilhelms-Universität Bonn

Award Identifier / Grant number: Unassigned

Acknowledgments

MMI acknowledges the ‘guest researcher’ contract at the Institute of Physical and Theoretical Chemistry of the Rheinische Friedrich-Wilhelms-Universität Bonn, Germany.

  1. Research ethics: Not applicable.

  2. Author contributions: The project was designed by MMI, the entire work was supervised by MMI. The computational work was performed by MA. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Voutchkova, A. M., Feliz, M., Clot, E., Eisenstein, O., Crabtree, R. H. Imidazolium carboxylates as versatile and selective N-heterocyclic carbene transfer agents: synthesis, mechanism, and applications. J. Am. Chem. Soc. 2007, 129, 12834–12846, https://doi.org/10.1021/ja0742885.Suche in Google Scholar PubMed

2. Hassen, S., Zouaghi, M. O., Slimani, I., Arfaoui, Y., Özdemir, N., Özdemir, I., Gürbüz, N., Manso, L., Gatri, R., Hamdi, N. Synthesis, crystal structures, DFT calculations, and catalytic application in hydrosilylation of acetophenone derivatives with triethylsilane of novel rhodium-n-heterocyclic carbene (NHCs) complex. J. Mol. Struct. 2022, 1265, 133397, https://doi.org/10.1016/j.molstruc.2022.133397.Suche in Google Scholar

3. Kumar, A., Kumar, M., Verma, A. K. Well-defined palladium N-heterocyclic carbene complexes: direct C-H bond arylation of heteroarenes. J. Org. Chem. 2020, 85, 13983–13996, https://doi.org/10.1021/acs.joc.0c02024.Suche in Google Scholar PubMed

4. Sauvage, X., Demonceau, A., Delaude, L. Homobimetallic ruthenium-ethylene, vinylidene, allenylidene, and indenylidene catalysts for Olefin metathesis. Macromol. Symp. 2010, 293, 24–27, https://doi.org/10.1002/masy.200900044.Suche in Google Scholar

5. Wang, Y., Qiao, Y., Lan, Y., Wei, D. Predicting the origin of selectivity in NHC catalyzed ring opening of formylcyclopropane: a theoretical investigation. Catal. Sci. Technol. 2021, 11, 332–337, https://doi.org/10.1039/d0cy01768j.Suche in Google Scholar

6. Shyam, A., Mondal, P. Theoretical insight towards mechanism, role of NHC and DBU in the synthesis of substituted quinolines. ChemistrySelect 2020, 5, 1300–1307, https://doi.org/10.1002/slct.201903697.Suche in Google Scholar

7. Mavroskoufis, A., Lohani, M., Weber, M., Hopkinson, M. N., Götze, J. P. A (TD-)DFT study on photo-NHC catalysis: photoenolization/Diels-Alder reaction of acid fluorides catalyzed by N-Heterocyclic carbenes. Chem. Sci. 2023, 14, 4027–4037, https://doi.org/10.1039/d2sc04732b.Suche in Google Scholar PubMed PubMed Central

8. Ongagna, J. M., Fouegue, A. D. T., Amana, B. A., D’ambassa, G. M., Mfomo, J. Z., Meva’A, L. M., Mama, D. B. B3LYP, M06 and B3PW91 DFT assignment of nd8 metal-bis-(N-heterocyclic carbene) complexes. J. Mol. Model. 2020, 26, 246, https://doi.org/10.1007/s00894-020-04500-7.Suche in Google Scholar PubMed

9. Benedikter, M., Musso, J., Kesharwani, M. K., Sterz, K. L., Elser, I., Ziegler, F., Fischer, F., Plietker, B., Frey, W., Kastner, J., Winkler, M., van Slageren, J., Nowakowski, M., Bauer, M., Buchmeiser, M. R. Charge distribution in cationic molybdenum imido alkylidene N-heterocyclic carbene complexes: a combined X-ray, XAS, XES, DFT, Mössbauer, and catalysis approach. ACS Catal. 2020, 10, 14810–14823, https://doi.org/10.1021/acscatal.0c03978.Suche in Google Scholar

10. Pienko, K. M., Trzaskowski, B. Rate-limiting steps in the intramolecular C-H activation of ruthenium N-heterocyclic carbene complexes. J. Phys. Chem. A 2020, 124, 3609–3617, https://doi.org/10.1021/acs.jpca.0c01354.Suche in Google Scholar PubMed PubMed Central

11. Liu, R., Zhu, S., Shi, H., Hu, J., Shu, M., Liu, J., Zhu, H. Synthesis, structural characterization, optoelectrical properties of Ir(III) complexes with imidazolium-based carbene ligands. Inorg. Chem. Commun. 2016, 74, 26–30, https://doi.org/10.1016/j.inoche.2016.10.029.Suche in Google Scholar

12. Back, O., Ellinger, M. H., Martin, C. D., Martin, D., Bertrand, G. 31P NMR chemical shifts of carbene-phosphinidene adducts as an indicator of the p-accepting properties of carbenes. Angew. Chem. Int. Ed. 2013, 52, 2939–2943, https://doi.org/10.1002/anie.201209109.Suche in Google Scholar PubMed

13. Vougioukalakis, G. C., Grubbs, R. H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev. 2010, 110, 1746–1787, https://doi.org/10.1021/cr9002424.Suche in Google Scholar PubMed

14. Krachko, T., Slootweg, J. C. N-Heterocyclic carbene phosphinidene adducts: synthesis, properties and applications. Eur. J. Inorg. Chem. 2018, 24, 2734–2754, https://doi.org/10.1002/ejic.201800459.Suche in Google Scholar

15. Smith, C. A., Narouz, M. R., Lummis, P. A., Singh, I., Nazemi, A., Li, C. H., Crudden, C. M. N-Heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056, https://doi.org/10.1021/acs.chemrev.8b00514.Suche in Google Scholar PubMed

16. Peris, E. Smart N-heterocyclic carbene ligands in catalysis. Chem. Rev. 2018, 118, 9988–10031, https://doi.org/10.1021/acs.chemrev.6b00695.Suche in Google Scholar PubMed

17. Benhamou, L., Chandon, E., Lavigne, G., Laponnaz, S. B., Cesar, V. Synthetic routes to N-heterocyclic carbene precursors. Chem. Rev. 2011, 111, 2705–2733, https://doi.org/10.1021/cr100328e.Suche in Google Scholar PubMed

18. Mieusset, J. L., Brinker, U. H. The carbene reactivity surface: a classification. J. Org. Chem. 2008, 73, 1553–1558, https://doi.org/10.1021/jo7026118.Suche in Google Scholar PubMed

19. Schuster, G. B. Structure and reactivity of carbenes having aryl substituents. Adv. Phys. Org. Chem. 1986, 22, 311–361.10.1016/S0065-3160(08)60170-7Suche in Google Scholar

20. Harrison, J. F. Electronic structure of carbenes. I. CH2, CHF and CF2. J. Am. Chem. Soc. 1971, 93, 4112–4119, https://doi.org/10.1021/ja00746a003.Suche in Google Scholar

21. Hahn, F. E., Jahnke, M. C. Heterocyclic carbenes: synthesis and coordination chemistry. Angew. Chem. Int. Ed. 2008, 47, 3122–3172, https://doi.org/10.1002/anie.200703883.Suche in Google Scholar PubMed

22. Villar, P., Perez, A. B. G., del Lera, A. R. Deciphering the origin of enantioselectivity on the cis cyclopropanation of styrene with enantiopure di-chloro, di-gold(i)-SEGPHOS carbenoids generated from propargylic esters. J. Org. Chem. 2019, 84, 7664–7673, https://doi.org/10.1021/acs.joc.9b00250.Suche in Google Scholar PubMed

23. Shi, J., Ran, J., Qin, C., Qi, W., Zhang, L. Kinetic mechanisms of hydrogen abstraction reactions from methanol by methyl, triplet methylene and formyl radicals. Comput. Theor. Chem. 2015, 1074, 73–82, https://doi.org/10.1016/j.comptc.2015.10.009.Suche in Google Scholar

24. Wang, Y., Wu, B., Zhang, H., Wei, D., Tang, M. Computational study on N-heterocyclic carbene-catalyzed Csp2 -Csp3 bond activation/[4 + 2] cycloaddition cascade reaction of cyclobutenones with imines: a new application of the conservation principle of molecular orbital symmetry. Phys. Chem. Chem. Phys. 2016, 18, 19933–19943, https://doi.org/10.1039/c6cp03180c.Suche in Google Scholar PubMed

25. Blyth, M. T., Coote, M. L. Manipulation of N-heterocyclic carbene reactivity with practical oriented electric fields. Phys. Chem. Chem. Phys. 2023, 25, 375–383, https://doi.org/10.1039/d2cp04507a.Suche in Google Scholar PubMed

26. Fantuzzi, F., Coutinho, C. B., Oliveira, R. R., Nascimento, M. A. C. Diboryne nanostructures stabilized by multitopic N-heterocyclic carbenes: a computational study. Inorg. Chem. 2018, 57, 3931–3940, https://doi.org/10.1021/acs.inorgchem.8b00089.Suche in Google Scholar PubMed

27. Bellotti, P., Koy, M., Hopkinson, M. N., Glorius, F. Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nat. Rev. Chem 2021, 5, 711–725, https://doi.org/10.1038/s41570-021-00321-1.Suche in Google Scholar PubMed

28. Yan, H., Liu, Z., Tan, K., Tan, K., Ji, R., Ye, Y., Yan, T., Shen, Y. Synthesis and evaluation of indole-substituted N-heterocyclic carbene ligands. Tetrahedron Lett. 2020, 61, 152450, https://doi.org/10.1016/j.tetlet.2020.152450.Suche in Google Scholar

29. Winkel, R. W., Dubinina, G. G., Abboud, K. A., Schanze, K. S. Photophysical properties of trans-platinum acetylide complexes featuring N-heterocyclic carbene ligands. Dalton Trans. 2014, 43, 17712–17720, https://doi.org/10.1039/c4dt01520g.Suche in Google Scholar PubMed

30. Winn, C. L., Guillen, F., Pytkowicz, J., Roland, S., Mangeney, P., Alexakis, A. Enantioselective copper catalysed 1,4-conjugate addition reactions using chiral N-heterocyclic carbenes. J. Organomet. Chem. 2005, 690, 5672–5695, https://doi.org/10.1016/j.jorganchem.2005.07.024.Suche in Google Scholar

31. Ma, X. H., Si, Y., Hu, J. H., Dong, X. Y., Xie, G., Pan, F., Wei, Y. L., Zang, S. Q., Zhao, Y. High-efficiency pure blue circularly polarized phosphorescence from chiral N-heterocyclic-carbene-stabilized copper (I) clusters. J. Am. Chem. Soc. 2023, 145, 25874–25886, https://doi.org/10.1021/jacs.3c10192.Suche in Google Scholar PubMed

32. Kaur, G., Dominique, N. L., Hu, G., Nalaoh, P., Thimes, R. L., Strausser, S. L., Jensen, L., Camden, J. P., Jenkins, D. M. Reactivity variance between stereoisomers of saturated N-heterocyclic carbenes on gold surfaces. Inorg. Chem. Front. 2023, 10, 6282–6293, https://doi.org/10.1039/d3qi01541f.Suche in Google Scholar

33. Parida, R., Das, S., Karas, L. J., Wu, J. C., Roymahapatra, G., Giri, S. Superalkali ligands as a building block for aromatic trinuclear Cu(I)-NHC complexes. Inorg. Chem. Front. 2019, 6, 3336–3344, https://doi.org/10.1039/c9qi00873j.Suche in Google Scholar

34. Liu, G., Quintana, C., Wang, G., Kodikara, M. S., Du, J., Stranger, R., Zhang, C., Cifuentes, M. P., Humphrey, M. G. Organometallic complexes for non-linear optics. 59. syntheses and optical properties of some octupolar (N-heterocyclic carbene) gold complexes. Aust. J. Chem. 2017, 70, 79–89, https://doi.org/10.1071/ch16321.Suche in Google Scholar

35. Islam, M. M., Bhuiyan, M. D. H., Bredow, T., Try, A. C. Theoretical investigation of the nonlinear optical properties of substituted anilines and N, N-dimethylanilines. Comput. Theor. Chem. 2011, 967, 165–170, https://doi.org/10.1016/j.comptc.2011.04.012.Suche in Google Scholar

36. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Gaussian 16, (Revision C.01); Gaussian, Inc.: Wallingford CT (USA), 2016.Suche in Google Scholar

37. Hassan, A. U., Mohyuddin, A., Nadeem, S., Güleryüz, C., Hassan, S. U., Javed, M., Muhsan, M. S. Structural and electronic (absorption and fluorescence) properties of a stable triplet dibenzylcarbene: a DFT study. J. Fluoresc. 2022, 32, 1629–1638, https://doi.org/10.1007/s10895-022-02969-4.Suche in Google Scholar PubMed

38. O’boyle, N. M., Tenderholt, A. L., Langner, K. M. GaussSum 3.0. J. Comp. Chem. 2008, 29, 839–845, https://doi.org/10.1002/jcc.20823.Suche in Google Scholar PubMed

39. Fleming, I. Frontier Orbitals and Organic Chemical Reactions; Wiley: London, 1976.Suche in Google Scholar

40. Alturk, S., Avci, D., Tamer, O., Atalay, Y. 1H-Pyrazole-3-carboxylic acid: experimental and computational study. J. Mol. Struct. 2018, 1164, 28–36, https://doi.org/10.1016/j.molstruc.2018.03.032.Suche in Google Scholar

41. Koopmans, T. A. Ordering of wave functions and eigen energies to the individual electrons of an atom. Physica 1934, 1, 104–113, https://doi.org/10.1016/s0031-8914(34)90011-2.Suche in Google Scholar

42. Kosar, B., Albayrak, C. Spectroscopic investigations and quantum chemical computational study of (E)-4-Methoxy-2-[(p-Tolylimino) methyl] phenol. Spectrochim. Acta A 2011, 78, 160–167, https://doi.org/10.1016/j.saa.2010.09.016.Suche in Google Scholar PubMed

43. Gayathri, V., Pentela, N., Samanta, D. Palladium nanoparticles capped by thermoresponsive N-heterocyclic carbene: two different approaches for a comparative study. Appl. Organomet. Chem. 2021, 35, 1–14, https://doi.org/10.1002/aoc.6166.Suche in Google Scholar

44. Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M., Raposo, M. M. Synthesis and characterization of new thienyl pyrrolyl benzothiazoles as efficient and thermally stable nonlinear optical chromophores. Tetrahedron 2007, 63, 4258–4265, https://doi.org/10.1016/j.tet.2007.03.065.Suche in Google Scholar

45. You, J. W., Bongu, S. R., Bao, Q., Panoiu, N. C. Nonlinear optical properties and applications of 2D materials: theoretical and experimental aspects. Nanophotonics 2018, 8, 1–35, https://doi.org/10.1515/nanoph-2018-0106.Suche in Google Scholar

46. Adant, C., Dupuis, M., Bredas, J. L. Ab initio study of the nonlinear optical properties of urea: electron correlation and dispersion effects. Int. J. Quantum Chem. 1995, 29, 497–507, https://doi.org/10.1002/qua.560560853.Suche in Google Scholar

Received: 2023-10-25
Accepted: 2023-11-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Thomas Bredow zum 60. Geburtstag gewidmet
  5. Research Articles
  6. Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
  7. Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
  8. Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
  9. Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion
  10. Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
  11. mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
  12. A molecular mechanics implementation of the cyclic cluster model
  13. A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
  14. Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
  15. Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
  16. High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
  17. Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
  18. Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19
  19. From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
  20. A Hybrid Monte Carlo study of argon solidification
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0092/html
Button zum nach oben scrollen