Startseite Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces

  • Tobias Wittemann ORCID logo EMAIL logo , Halil İbrahim Sözen ORCID logo , Mehtap Oezaslan ORCID logo und Thorsten Klüner ORCID logo
Veröffentlicht/Copyright: 5. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Understanding the chemisorption of atoms on precious metal surfaces is of substantial interest for the rational design of heterogeneous and electrochemical catalysts. In this study, we report density functional theory (DFT) investigations of the chemisorption of atomic H and O on bimetallic Pt x Ir y (111) surfaces for bifunctional anode catalyst materials in polymer electrolyte membrane (PEM) fuel cells. We found that for both adsorbates, the adsorption on the Pt(111) surface is in general less exothermic than on the Ir(111) surface. Our study has revealed that chemisorption on the bimetallic surfaces becomes more stable with increasing number of Ir surface atoms at the adsorption site. While for hydrogen atoms the ONTOP sites yield the most negative adsorption energies, the chemisorption of oxygen atoms appears to be most stable on the FCC sites for both the mono- and bimetallic surfaces. Using the ab initio thermodynamics approach, we calculated phase diagrams for the chemisorption of H and O atoms on these metal surfaces in order to transfer our findings to finite temperature and pressure conditions. Our theoretical results may provide an improved understanding of the hydrogen oxidation reaction (HOR) and oxygen evolution reaction (OER) on intermetallic Pt x Ir y (111) surfaces and may be helpful for the rational design of new bifunctional PEM fuel cell anode catalyst materials.


Corresponding author: Tobias Wittemann, Department of Chemistry, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9–11, 26129 Oldenburg, Germany, E-mail:
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.

Funding source: German Federal Ministry of Education and Research

Award Identifier / Grant number: 03SF0617B

Funding source: German Federal Ministry of Education and Research

Award Identifier / Grant number: 03SF0617A

Funding source: German Research Foundation (DFG)

Award Identifier / Grant number: INST 184/157-1 FUGG

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: We thank the BMBF for financial support via the joint projects ECatPEMFCplus/03SF0617B and 03SF0617A. The simulations were performed at the HPC Cluster CARL, located at the University of Oldenburg (Germany) and funded by the DFG through its Major Research Instrumentation Programme (INST 184/157-1 FUGG) and the Ministry of Science and Culture (MWK) of the State of Lower Saxony.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Kongkanand, A., Mathias, M. F. J. Phys. Chem. Lett. 2016, 7, 1127–1137; https://doi.org/10.1021/acs.jpclett.6b00216.Suche in Google Scholar PubMed

2. Edwards, P. P., Kuznetsov, V. L., David, W. I. F., Brandon, N. P. Energy Policy 2008, 36, 4356–4362; https://doi.org/10.1016/j.enpol.2008.09.036.Suche in Google Scholar

3. Janssen, M., Weber, P., Oezaslan, M. Curr. Opin. Electrochem. 2023, 40, 101337; https://doi.org/10.1149/1945-7111/abad68.Suche in Google Scholar

4. Weber, P., Weber, D. J., Dosche, C., Oezaslan, M. ACS Catal. 2022, 12, 6394–6408; https://doi.org/10.1021/acscatal.2c00514.Suche in Google Scholar

5. Bizzotto, F., Quinson, J., Zana, A., Kirkensgaard, J. J. K., Dworzak, A., Oezaslan, M., Arenz, M. Catal. Sci. Technol. 2019, 9, 6345–6356; https://doi.org/10.1039/C9CY01728C.Suche in Google Scholar

6. Marić, R., Gebauer, C., Nesselberger, M., Hasché, F., Strasser, P. J. Electrochem. Soc. 2020, 167, 124520; https://doi.org/10.1149/1945-7111/abad68.Suche in Google Scholar

7. Reuter, K. Catal. Lett. 2016, 146, 541–563; https://doi.org/10.1007/s10562-015-1684-3.Suche in Google Scholar

8. Kresse, G., Furthmüller, J. Phys. Rev. B 1996, 54, 11169; https://doi.org/10.1103/physrevb.54.11169.Suche in Google Scholar PubMed

9. Kresse, G., Joubert, D. Phys. Rev. B 1999, 59, 1758; https://doi.org/10.1103/physrevb.59.1758.Suche in Google Scholar

10. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865; https://doi.org/10.1103/physrevlett.77.3865.Suche in Google Scholar

11. Methfessel, M., Paxton, A. T. Phys. Rev. B 1989, 40, 3616; https://doi.org/10.1103/physrevb.40.3616.Suche in Google Scholar PubMed

12. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188; https://doi.org/10.1103/physrevb.13.5188.Suche in Google Scholar

13. Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M., Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K., Lysgaard, S., Maronsson, J. B., Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., Vegge, T., Vilhelmsen, L., Walter, M., Zhenhua, Z., Jacobsen, K. W. J. Phys.: Condens. Matter 2017, 29, 273002.10.1088/1361-648X/aa680eSuche in Google Scholar PubMed

14. Sözen, H. I., Ener, S., Maccari, F., Skokov, K. P., Gutfleisch, O., Körmann, F., Neugebauer, J., Hickel, T. Phys. Rev. Mater. 2019, 3, 084407; https://doi.org/10.1103/PhysRevMaterials.3.084407.Suche in Google Scholar

15. Sözen, H. I., Hickel, T., Neugebauer, J. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 2020, 68, 101731; https://doi.org/10.1016/j.calphad.2019.101731.Suche in Google Scholar

16. Sözen, H. I., Klüner, T. J. Magn. Magn. Mater. 2022, 559, 169529; https://doi.org/10.1016/j.jmmm.2022.169529.Suche in Google Scholar

17. Erdmann, S., Klüner, T., Sözen, H. I. J. Magn. Magn. Mater. 2023, 572, 170645; https://doi.org/10.1016/j.jmmm.2023.170645.Suche in Google Scholar

18. Sözen, H. I. Ab initio phase stabilities of Ce-based hard magnetic materials; Dissertation, Ruhr-Universität Bochum: Bochum, 2019.Suche in Google Scholar

19. Sözen, H. I., Ener, S., Maccari, F., Fayyazi, B., Gutfleisch, O., Neugebauer, J., Hickel, T. Phys. Rev. Mater. 2023, 7, 014410; https://doi.org/10.1103/PhysRevMaterials.7.014410.Suche in Google Scholar

20. Chase, M. W., Davies, C. A., Downey, J. R., Frurip, D. J., McDonald, R. A., Syverud, A. N., Eds. NIST-JANAF Thermochemical Tables (release 1985); National Institute of Standards and Technology: Gaithersburg, Maryland (USA), 1985.Suche in Google Scholar

21. Vurdu, C. D. Adv. Condens. Matter Phys. 2018, 2018, 4186968; https://doi.org/10.1155/2018/4186968.Suche in Google Scholar

22. Ferrin, P., Kandoi, S., Nilekar, A. U., Mavrikakis, M. Surf. Sci. 2012, 606, 679–689; https://doi.org/10.1016/j.susc.2011.12.017.Suche in Google Scholar

23. Watson, G. W., Wells, R. P. K., Willock, D. J., Hutchings, G. J. J. Phys. Chem. B 2001, 105, 4889–4894; https://doi.org/10.1021/jp002864c.Suche in Google Scholar

24. Ford, D. C., Xu, Y., Mavrikakis, M. Surf. Sci. 2005, 587, 159–174; https://doi.org/10.1016/j.susc.2005.04.028.Suche in Google Scholar

25. Hanh, T. T. T., Takimoto, Y., Sugino, O. Surf. Sci. 2014, 625, 104–111; https://doi.org/10.1016/j.susc.2014.03.006.Suche in Google Scholar

26. Zhang, H., Li, W.-X. J. Phys. Chem. C 2009, 113, 21361–21367; https://doi.org/10.1021/jp9074866.Suche in Google Scholar

27. Will, F. G. J. Electrochem. Soc. 1965, 112(5), 451; https://doi.org/10.1149/1.2423567.Suche in Google Scholar

28. Faglioni, F., Goddard, W. A.III J. Chem. Phys. 2005, 122, 014704; https://doi.org/10.1063/1.1814938.Suche in Google Scholar PubMed

29. Wang, Y., Wang, G., Li, G., Huang, B., Pan, J., Liu, Q., Han, J., Xiao, L., Lu, J., Zhuang, L. Energy Environ. Sci. 2015, 8, 177–181; https://doi.org/10.1039/c4ee02564d.Suche in Google Scholar

30. Zheng, J., Zhuang, Z., Xu, B., Yan, Y. ACS Catal. 2015, 5, 4449–4455; https://doi.org/10.1021/acscatal.5b00247.Suche in Google Scholar

31. Sheng, W., Zhuang, Z., Gao, M., Zheng, J., Chen, J. G., Yan, Y. Nat. Commun. 2015, 6, 5848; https://doi.org/10.1038/ncomms6848.Suche in Google Scholar PubMed

32. Durst, J., Siebel, A., Simon, C., Hasché, F., Herranz, J., Gasteiger, H. A. Energy Environ. Sci. 2014, 7, 2255–2260; https://doi.org/10.1039/c4ee00440j.Suche in Google Scholar

33. Strmcnik, D., Uchimura, M., Wang, C., Subbaraman, R., Danilovic, N., van der Vliet, D., Paulikas, A. P., Stamenkovic, V. R., Markovic, N. M. Nat. Chem. 2013, 5, 300–306; https://doi.org/10.1038/nchem.1574.Suche in Google Scholar PubMed

34. Parker, D. H., Bartram, M. E., Koel, B. E. Surf. Sci. 1989, 217, 489–510; https://doi.org/10.1016/0039-6028(89)90443-3.Suche in Google Scholar

35. Weaver, J. F., Chen, J.-J., Gerrard, A. L. Surf. Sci. 2005, 592, 83–103; https://doi.org/10.1016/j.susc.2005.07.010.Suche in Google Scholar

36. Walker, M., Parkinson, C. R., Draxler, M., Brown, M. G., McConville, C. F. Surf. Sci. 2006, 600, 3327–3336; https://doi.org/10.1016/j.susc.2006.06.034.Suche in Google Scholar

37. Devarajan, S. P., Hinojosa, J. A., Weaver, J. F. Surf. Sci. 2008, 602, 3116–3124; https://doi.org/10.1016/j.susc.2008.08.008.Suche in Google Scholar

38. Hawkins, J. M., Weaver, J. F., Asthagiri, A. Phys. Rev. B 2009, 79, 125434; https://doi.org/10.1103/physrevb.79.125434.Suche in Google Scholar

39. Krekelberg, W. P., Greeley, J., Mavrikakis, M. J. Phys. Chem. B 2004, 108, 987–994; https://doi.org/10.1021/jp035786c.Suche in Google Scholar

40. Gao, H., Xiong, Y., Liu, X., Zhao, D., Feng, Y., Wang, L., Wang, J. Appl. Surf. Sci. 2016, 389, 211–215; https://doi.org/10.1016/j.apsusc.2016.06.185.Suche in Google Scholar

41. Gambardella, P., Šljivančanin, Ž., Hammer, B., Blanc, M., Kuhnke, K., Kern, K. Phys. Rev. Lett. 2001, 87(4), 056103; https://doi.org/10.1103/physrevlett.87.056103.Suche in Google Scholar PubMed

42. Carlisle, C. I., Fujimoto, T., Sim, W. S., King, D. A. Surf. Sci. 2000, 470, 15–31; https://doi.org/10.1016/s0039-6028(00)00831-1.Suche in Google Scholar

43. Muller, O., Roy, R. J. Less-Common Met. 1968, 16, 129–146; https://doi.org/10.1016/0022-5088(68)90070-2.Suche in Google Scholar

44. Fernandez, M. P. H., Chamberland, B. L. J. Less-Common Met. 1984, 99, 99–105; https://doi.org/10.1016/0022-5088(84)90338-2.Suche in Google Scholar

45. Hurtado, I., Neuschütz, D., Eds. Landolt-Börnstein Thermodynamic Properties of Inorganic Materials Group IV; Springer: Berlin, Heidelberg, Vol. 19, 1999.Suche in Google Scholar

46. He, Y. B., Stierle, A., Li, W. X., Farkas, A., Kasper, N., Over, H. J. Phys. Chem. C 2008, 112, 11946–11953; https://doi.org/10.1021/jp803607y.Suche in Google Scholar

47. Todorova, M., Li, W. X., Ganduglia-Pirovano, M. V., Stampfl, C., Reuter, K., Scheffler, M. Phys. Rev. Lett. 2002, 89(4), 096103; https://doi.org/10.1103/physrevlett.89.096103.Suche in Google Scholar

48. Conrad, H., Ertl, G., Küppers, J., Latta, E. E. Surf. Sci. 1977, 65, 245–260; https://doi.org/10.1016/0039-6028(77)90305-3.Suche in Google Scholar

49. Ganduglia-Pirovano, M. V., Reuter, K., Scheffler, M. Phys. Rev. B 2002, 65, 245426; https://doi.org/10.1103/physrevb.65.245426.Suche in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2023-0087).


Received: 2023-09-29
Accepted: 2023-10-31
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Thomas Bredow zum 60. Geburtstag gewidmet
  5. Research Articles
  6. Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
  7. Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
  8. Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
  9. Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion
  10. Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
  11. mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
  12. A molecular mechanics implementation of the cyclic cluster model
  13. A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
  14. Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
  15. Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
  16. High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
  17. Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
  18. Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19
  19. From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
  20. A Hybrid Monte Carlo study of argon solidification
Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0087/html
Button zum nach oben scrollen