Abstract
A new member of the A2B5C5X16 family of compounds – the first one containing Se – has been synthesized. Following a one-step mechanochemical synthesis route, starting from the binary selenides and Mg metal, Cu2Mg5Sn5Se16 has been obtained. Structural evaluation was carried out using X-ray diffraction with subsequent Rietveld refinement. Cu2Mg5Sn5Se16 adopts the spinel type with space group Fd
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.
Acknowledgments
Special thanks to the Zentrum für Elektronenmikroskopie (ZELMI) of the TU Berlin giving access to the EDX measurements. EDX measurements were carried out by Christoph Fahrenson.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Hahn, H., Klingler, W. Z. Anorg. Allg. Chem. 1950, 263, 177–190; https://doi.org/10.1002/zaac.19502630406.Search in Google Scholar
2. Hashikuni, K., Suekuni, K., Usui, H., Chetty, R., Ohta, M., Kuroki, K., Takabatake, T., Watanabe, K., Ohtaki, M. Inorg. Chem. 2019, 58, 1425–1432; https://doi.org/10.1021/acs.inorgchem.8b02955.Search in Google Scholar PubMed
3. Hashikuni, K., Suekuni, K., Watanabe, K., Bouyrie, Y., Ohta, M., Ohtaki, M., Takabatake, T. J. Solid State Chem. 2018, 259, 5–10; https://doi.org/10.1016/j.jssc.2017.12.031.Search in Google Scholar
4. TewariG, C., Tripathi, T. S., Rastogi, A. K. J. Electron. Mater. 2010, 39, 1133–1139; https://doi.org/10.1007/s11664-010-1185-5.Search in Google Scholar
5. Canepa, P., Bo, S.-H., Sai Gautam, G., Key, B., Richards, W. D., Shi, T., Tian, Y., Wang, Y., Li, J., Ceder, G. Nat. Commun. 2017, 8, 1759; https://doi.org/10.1038/s41467-017-01772-1.Search in Google Scholar PubMed PubMed Central
6. Sun, X., Bonnick, P., Duffort, V., Liu, M., Rong, Z., Persson, K. A., Ceder, G., Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273–2277; https://doi.org/10.1039/c6ee00724d.Search in Google Scholar
7. Wustrow, A., Key, B., Phillips, P. J., Sa, N., Lipton, A. S., Klie, R. F., Vaughey, J. T., Poeppelmeier, K. R. Inorg. Chem. 2018, 57, 8634–8638; https://doi.org/10.1021/acs.inorgchem.8b01417.Search in Google Scholar PubMed
8. Parasyuk, O. V., Olekseyuk, I. D., Piskach, L. V., Volkov, S. V., Pekhnyo, V. I. J. Alloys Compd. 2005, 399, 173–177; https://doi.org/10.1016/j.jallcom.2005.03.023.Search in Google Scholar
9. Garg, G., Bobev, S., Ganguli, A. K. J. Alloys Compd. 2001, 327, 113–115; https://doi.org/10.1016/s0925-8388(01)01549-3.Search in Google Scholar
10. Cochez, M. A., Jumas, J. C., Lavela, P., Morales, J., Olivier-Fourcade, J., Tirado, J. L. J. Power Sources 1996, 62, 101–105; https://doi.org/10.1016/s0378-7753(96)02409-3.Search in Google Scholar
11. Garg, G., Ramanujachary, K. V., Lofland, S. E., Lobanov, M. V., Greenblatt, M., Maddanimath, T., Vijayamohanan, K., Ganguli, A. K. J. Solid State Chem. 2003, 174, 229–232; https://doi.org/10.1016/s0022-4596(03)00240-8.Search in Google Scholar
12. Branci, C., Sarradin, J., Olivier-Fourcade, J., Jumas, J. J. Power Sources 1999, 81-82, 282–285; https://doi.org/10.1016/s0378-7753(99)00201-3.Search in Google Scholar
13. Zhou, M., Yang, Y., Guo, Y., Lin, Z., Yao, J., Wu, Y., Chen, C. Chem. Mater. 2017, 29, 7993–8002; https://doi.org/10.1021/acs.chemmater.7b03143.Search in Google Scholar
14. Lin, H., Zhou, L.-J., Chen, L. Chem. Mater. 2012, 24, 3406–3414; https://doi.org/10.1021/cm301550a.Search in Google Scholar
15. Lin, H., Chen, L., Zhou, L.-J., Wu, L.-M. J. Am. Chem. Soc. 2013, 135, 12914–12921; https://doi.org/10.1021/ja4074084.Search in Google Scholar PubMed
16. Harada, S. Mater. Res. Bull. 1973, 8, 1361–1369; https://doi.org/10.1016/0025-5408(73)90020-2.Search in Google Scholar
17. Wang, P., Chu, Y., Tudi, A., Xie, C., Yang, Z., Pan, S., Li, J. Adv. Sci. 2022, 9, 2106120; https://doi.org/10.1002/advs.202106120.Search in Google Scholar PubMed PubMed Central
18. Pandey, R., Sutjianto, A. Solid State Commun. 1994, 91, 269–271; https://doi.org/10.1016/0038-1098(94)90300-x.Search in Google Scholar
19. La Morade, P., Goodenough, J. B. J. Solid State Chem. 1987, 70, 121–128.10.1016/0022-4596(87)90185-XSearch in Google Scholar
20. Gulay, L. D., Shemet, V., Olekseyuk, I. D. J. Alloys Compd. 2005, 393, 174–179; https://doi.org/10.1016/j.jallcom.2004.10.037.Search in Google Scholar
21. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar
22. Rodríguez-Carvajal, J. FullProf, A Program for Rietveld Refinement and Pattern Matching Analysis, Satellite Meeting on Powder Diffraction of the 15th International Congress of the IUCr, Toulouse (France), 1990.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification