Home Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
Article
Licensed
Unlicensed Requires Authentication

Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type

  • Kevin D. Profita and Eva M. Heppke EMAIL logo
Published/Copyright: April 5, 2024
Become an author with De Gruyter Brill

Abstract

A new member of the A2B5C5X16 family of compounds – the first one containing Se – has been synthesized. Following a one-step mechanochemical synthesis route, starting from the binary selenides and Mg metal, Cu2Mg5Sn5Se16 has been obtained. Structural evaluation was carried out using X-ray diffraction with subsequent Rietveld refinement. Cu2Mg5Sn5Se16 adopts the spinel type with space group Fd 3 m and exhibits a statistical distribution of Cu, Mg, and Sn on Wyckoff position 16d whereas Wyckoff position 8a is only occupied by Mg. Despite the fact that structures containing MgSe4 tetrahedra are rare in the literature, it appeared to be the most plausible way of distributing the cations in this compound.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Eva Maria Heppke, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany, E-mail:

Acknowledgments

Special thanks to the Zentrum für Elektronenmikroskopie (ZELMI) of the TU Berlin giving access to the EDX measurements. EDX measurements were carried out by Christoph Fahrenson.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Hahn, H., Klingler, W. Z. Anorg. Allg. Chem. 1950, 263, 177–190; https://doi.org/10.1002/zaac.19502630406.Search in Google Scholar

2. Hashikuni, K., Suekuni, K., Usui, H., Chetty, R., Ohta, M., Kuroki, K., Takabatake, T., Watanabe, K., Ohtaki, M. Inorg. Chem. 2019, 58, 1425–1432; https://doi.org/10.1021/acs.inorgchem.8b02955.Search in Google Scholar PubMed

3. Hashikuni, K., Suekuni, K., Watanabe, K., Bouyrie, Y., Ohta, M., Ohtaki, M., Takabatake, T. J. Solid State Chem. 2018, 259, 5–10; https://doi.org/10.1016/j.jssc.2017.12.031.Search in Google Scholar

4. TewariG, C., Tripathi, T. S., Rastogi, A. K. J. Electron. Mater. 2010, 39, 1133–1139; https://doi.org/10.1007/s11664-010-1185-5.Search in Google Scholar

5. Canepa, P., Bo, S.-H., Sai Gautam, G., Key, B., Richards, W. D., Shi, T., Tian, Y., Wang, Y., Li, J., Ceder, G. Nat. Commun. 2017, 8, 1759; https://doi.org/10.1038/s41467-017-01772-1.Search in Google Scholar PubMed PubMed Central

6. Sun, X., Bonnick, P., Duffort, V., Liu, M., Rong, Z., Persson, K. A., Ceder, G., Nazar, L. F. Energy Environ. Sci. 2016, 9, 2273–2277; https://doi.org/10.1039/c6ee00724d.Search in Google Scholar

7. Wustrow, A., Key, B., Phillips, P. J., Sa, N., Lipton, A. S., Klie, R. F., Vaughey, J. T., Poeppelmeier, K. R. Inorg. Chem. 2018, 57, 8634–8638; https://doi.org/10.1021/acs.inorgchem.8b01417.Search in Google Scholar PubMed

8. Parasyuk, O. V., Olekseyuk, I. D., Piskach, L. V., Volkov, S. V., Pekhnyo, V. I. J. Alloys Compd. 2005, 399, 173–177; https://doi.org/10.1016/j.jallcom.2005.03.023.Search in Google Scholar

9. Garg, G., Bobev, S., Ganguli, A. K. J. Alloys Compd. 2001, 327, 113–115; https://doi.org/10.1016/s0925-8388(01)01549-3.Search in Google Scholar

10. Cochez, M. A., Jumas, J. C., Lavela, P., Morales, J., Olivier-Fourcade, J., Tirado, J. L. J. Power Sources 1996, 62, 101–105; https://doi.org/10.1016/s0378-7753(96)02409-3.Search in Google Scholar

11. Garg, G., Ramanujachary, K. V., Lofland, S. E., Lobanov, M. V., Greenblatt, M., Maddanimath, T., Vijayamohanan, K., Ganguli, A. K. J. Solid State Chem. 2003, 174, 229–232; https://doi.org/10.1016/s0022-4596(03)00240-8.Search in Google Scholar

12. Branci, C., Sarradin, J., Olivier-Fourcade, J., Jumas, J. J. Power Sources 1999, 81-82, 282–285; https://doi.org/10.1016/s0378-7753(99)00201-3.Search in Google Scholar

13. Zhou, M., Yang, Y., Guo, Y., Lin, Z., Yao, J., Wu, Y., Chen, C. Chem. Mater. 2017, 29, 7993–8002; https://doi.org/10.1021/acs.chemmater.7b03143.Search in Google Scholar

14. Lin, H., Zhou, L.-J., Chen, L. Chem. Mater. 2012, 24, 3406–3414; https://doi.org/10.1021/cm301550a.Search in Google Scholar

15. Lin, H., Chen, L., Zhou, L.-J., Wu, L.-M. J. Am. Chem. Soc. 2013, 135, 12914–12921; https://doi.org/10.1021/ja4074084.Search in Google Scholar PubMed

16. Harada, S. Mater. Res. Bull. 1973, 8, 1361–1369; https://doi.org/10.1016/0025-5408(73)90020-2.Search in Google Scholar

17. Wang, P., Chu, Y., Tudi, A., Xie, C., Yang, Z., Pan, S., Li, J. Adv. Sci. 2022, 9, 2106120; https://doi.org/10.1002/advs.202106120.Search in Google Scholar PubMed PubMed Central

18. Pandey, R., Sutjianto, A. Solid State Commun. 1994, 91, 269–271; https://doi.org/10.1016/0038-1098(94)90300-x.Search in Google Scholar

19. La Morade, P., Goodenough, J. B. J. Solid State Chem. 1987, 70, 121–128.10.1016/0022-4596(87)90185-XSearch in Google Scholar

20. Gulay, L. D., Shemet, V., Olekseyuk, I. D. J. Alloys Compd. 2005, 393, 174–179; https://doi.org/10.1016/j.jallcom.2004.10.037.Search in Google Scholar

21. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767.10.1107/S0567739476001551Search in Google Scholar

22. Rodríguez-Carvajal, J. FullProf, A Program for Rietveld Refinement and Pattern Matching Analysis, Satellite Meeting on Powder Diffraction of the 15th International Congress of the IUCr, Toulouse (France), 1990.Search in Google Scholar

Received: 2023-11-06
Accepted: 2023-11-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Thomas Bredow zum 60. Geburtstag gewidmet
  5. Research Articles
  6. Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
  7. Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
  8. Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
  9. Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion
  10. Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
  11. mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
  12. A molecular mechanics implementation of the cyclic cluster model
  13. A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
  14. Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
  15. Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
  16. High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
  17. Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
  18. Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19
  19. From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
  20. A Hybrid Monte Carlo study of argon solidification
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0098/html
Scroll to top button