Abstract
The monoclinic β-polymorph of gallium oxide is a semiconductor with an ultra-wide bandgap. It is becoming increasingly significant for various technological applications. We have investigated the tracer self-diffusion of oxygen in β-Ga2O3 single crystals as a function of the oxygen partial pressure (2, 20 and 200 mbar) at a temperature of 1375 °C. Isotopically enriched 18O2 gas was used as a tracer source and secondary ion mass spectrometry to analyze depth profiles. We observed that, with decreasing oxygen partial pressure, the diffusivities at a given temperature increase significantly. We suggest that this behaviour can be explained by a change in the diffusion mechanism from oxygen interstitials to oxygen vacancies.
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.
Acknowledgments
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1. This financial support is gratefully acknowledged.
-
Research ethics: Noted and followed.
-
Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors states no conflict of interest.
-
Research funding: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Roy, R., Hill, V. G., Osborn, E. F. J. Am. Chem. Soc. 1952, 74, 719–722; https://doi.org/10.1021/ja01123a039.Search in Google Scholar
2. Higashiwaki, M., Fujita, S. Gallium Oxide; Springer International Publishing: Cham (Switzerland), 2020.10.1007/978-3-030-37153-1Search in Google Scholar
3. Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J. R., Varley, J. B., van de Walle, C. G. New J. Phys. 2011, 13, 085014; https://doi.org/10.1088/1367-2630/13/8/085014.Search in Google Scholar
4. Pearton, S. J., Ren, F., Tadjer, M., Kim, J. J. Appl. Phys. 2018, 124, 220901; https://doi.org/10.1063/1.5062841.Search in Google Scholar
5. Pearton, S. J., Yang, J., Cary, P. H., Ren, F., Kim, J., Tadjer, M. J., Mastro, M. A. Appl. Phys. Rev. 2018, 5, 011301; https://doi.org/10.1063/1.5006941.Search in Google Scholar
6. Tadjer, M. J., Lyons, J. L., Nepal, N., Freitas, J. A.Jr, Koehler, A. D., Foster, G. M. ECS J. Solid State Sci. Technol. 2019, 8, Q3187–Q3194; https://doi.org/10.1149/2.0341907jss.Search in Google Scholar
7. Pearton, S., Mastro, M., Ren, F. Gallium Oxide - Technology, Devices and Applications; Elsevier: San Diego, 2018.Search in Google Scholar
8. Huan, Y.-W., Sun, S.-M., Gu, C.-J., Liu, W.-J., Ding, S.-J., Yu, H.-Y., Xia, C.-T., Zhang, D. W. Nanoscale Res. Lett. 2018, 13, 1–10.10.1186/s11671-018-2667-2Search in Google Scholar PubMed PubMed Central
9. Galazka, Z. Semicond. Sci. Technol. 2018, 33, 1–108.10.1088/1361-6641/aadf78Search in Google Scholar
10. Stepanov, S. I., Nikolaev, V. I., Bougrov, V. E., Romanov, A. E. Red. Adv. Mater. Sci. 2014, 44, 63–86.Search in Google Scholar
11. Rogers, D. J., Look, D. C., Teherani, F. H. Oxide-based Materials and Devices IX; SPIE: Bellingham, Washington, 2018.Search in Google Scholar
12. Fleischer, M., Meixner, H. Sens. Actuators, B 1991, 4, 437–441; https://doi.org/10.1016/0925-4005(91)80148-d.Search in Google Scholar
13. Ogita, M., Higo, K., Nakanishi, Y., Hatanaka, Y. Appl. Surf. Sci. 2001, 175, 721–725; https://doi.org/10.1016/s0169-4332(01)00080-0.Search in Google Scholar
14. Zacherle, T., Schmidt, P. C., Martin, M. Phys. Rev. B 2013, 87, 235206; https://doi.org/10.1103/physrevb.87.235206.Search in Google Scholar
15. Varley, J. B., Weber, J. R., Janotti, A., van de Walle, C. G. Appl. Phys. Lett. 2010, 97, 142106; https://doi.org/10.1063/1.3499306.Search in Google Scholar
16. Víllora, E. G., Shimamura, K., Yoshikawa, Y., Ujiie, T., Aoki, K. Appl. Phys. Lett. 2008, 92, 202120; https://doi.org/10.1063/1.2919728.Search in Google Scholar
17. Kyrtsos, A., Matsubara, M., Bellotti, E. Phys. Rev. B 2017, 95, 245202; https://doi.org/10.1103/physrevb.95.245202.Search in Google Scholar
18. Blanco, M. A., Sahariah, M. B., Jiang, H., Costales, A., Pandey, R. Phys. Rev. B 2005, 72, 184103; https://doi.org/10.1103/physrevb.72.184103.Search in Google Scholar
19. Peelaers, H., Lyons, J. L., Varley, J. B., van de Walle, C. G. APL Mater. 2019, 7, 022519; https://doi.org/10.1063/1.5063807.Search in Google Scholar
20. Galazka, Z., Uecker, R., Klimm, D., Irmscher, K., Naumann, M., Pietsch, M., Kwasniewski, A., Bertram, R., Ganschow, S., Bickermann, M. ECS J. Solid State Sci. Technol. 2017, 6, Q3007–Q3011; https://doi.org/10.1149/2.0021702jss.Search in Google Scholar
21. Uhlendorf, J., Galazka, Z., Schmidt, H. Appl. Phys. Lett. 2021, 119, 242106; https://doi.org/10.1063/5.0071729.Search in Google Scholar
22. Uhlendorf, J., Schmidt, H. Phys. Rev. Mater. 2023, 7, 093402.10.1088/1742-5468/acf8baSearch in Google Scholar
23. Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T., Yamakoshi, S. Jpn. J. Appl. Phys. 2016, 55, 1202A2; https://doi.org/10.7567/jjap.55.1202a2.Search in Google Scholar
24. Galazka, Z., Irmscher, K., Schewski, R., Hanke, I. M., Pietsch, M., Ganschow, S., Klimm, D., Dittmar, A., Fiedler, A., Schroeder, T., Bickermann, M. J. Cryst. Growth 2020, 529, 1–8.10.1016/j.jcrysgro.2019.125297Search in Google Scholar
25. Mehrer, H. Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer: Berlin, Heidelberg, 2007.10.1007/978-3-540-71488-0Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification
Articles in the same Issue
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification