Startseite Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C

  • Johanna Uhlendorf EMAIL logo und Harald Schmidt
Veröffentlicht/Copyright: 5. April 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The monoclinic β-polymorph of gallium oxide is a semiconductor with an ultra-wide bandgap. It is becoming increasingly significant for various technological applications. We have investigated the tracer self-diffusion of oxygen in β-Ga2O3 single crystals as a function of the oxygen partial pressure (2, 20 and 200 mbar) at a temperature of 1375 °C. Isotopically enriched 18O2 gas was used as a tracer source and secondary ion mass spectrometry to analyze depth profiles. We observed that, with decreasing oxygen partial pressure, the diffusivities at a given temperature increase significantly. We suggest that this behaviour can be explained by a change in the diffusion mechanism from oxygen interstitials to oxygen vacancies.


Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.



Corresponding author: Johanna Uhlendorf, Institut für Metallurgie, Technische Universität Clausthal, AG Festkörperkinetik, 38678 Clausthal-Zellerfeld, Germany, E-mail:

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1. This financial support is gratefully acknowledged.

  1. Research ethics: Noted and followed.

  2. Author contribution: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors states no conflict of interest.

  4. Research funding: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – SCHM – 15619/35-1.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Roy, R., Hill, V. G., Osborn, E. F. J. Am. Chem. Soc. 1952, 74, 719–722; https://doi.org/10.1021/ja01123a039.Suche in Google Scholar

2. Higashiwaki, M., Fujita, S. Gallium Oxide; Springer International Publishing: Cham (Switzerland), 2020.10.1007/978-3-030-37153-1Suche in Google Scholar

3. Janowitz, C., Scherer, V., Mohamed, M., Krapf, A., Dwelk, H., Manzke, R., Galazka, Z., Uecker, R., Irmscher, K., Fornari, R., Michling, M., Schmeißer, D., Weber, J. R., Varley, J. B., van de Walle, C. G. New J. Phys. 2011, 13, 085014; https://doi.org/10.1088/1367-2630/13/8/085014.Suche in Google Scholar

4. Pearton, S. J., Ren, F., Tadjer, M., Kim, J. J. Appl. Phys. 2018, 124, 220901; https://doi.org/10.1063/1.5062841.Suche in Google Scholar

5. Pearton, S. J., Yang, J., Cary, P. H., Ren, F., Kim, J., Tadjer, M. J., Mastro, M. A. Appl. Phys. Rev. 2018, 5, 011301; https://doi.org/10.1063/1.5006941.Suche in Google Scholar

6. Tadjer, M. J., Lyons, J. L., Nepal, N., Freitas, J. A.Jr, Koehler, A. D., Foster, G. M. ECS J. Solid State Sci. Technol. 2019, 8, Q3187–Q3194; https://doi.org/10.1149/2.0341907jss.Suche in Google Scholar

7. Pearton, S., Mastro, M., Ren, F. Gallium Oxide - Technology, Devices and Applications; Elsevier: San Diego, 2018.Suche in Google Scholar

8. Huan, Y.-W., Sun, S.-M., Gu, C.-J., Liu, W.-J., Ding, S.-J., Yu, H.-Y., Xia, C.-T., Zhang, D. W. Nanoscale Res. Lett. 2018, 13, 1–10.10.1186/s11671-018-2667-2Suche in Google Scholar PubMed PubMed Central

9. Galazka, Z. Semicond. Sci. Technol. 2018, 33, 1–108.10.1088/1361-6641/aadf78Suche in Google Scholar

10. Stepanov, S. I., Nikolaev, V. I., Bougrov, V. E., Romanov, A. E. Red. Adv. Mater. Sci. 2014, 44, 63–86.Suche in Google Scholar

11. Rogers, D. J., Look, D. C., Teherani, F. H. Oxide-based Materials and Devices IX; SPIE: Bellingham, Washington, 2018.Suche in Google Scholar

12. Fleischer, M., Meixner, H. Sens. Actuators, B 1991, 4, 437–441; https://doi.org/10.1016/0925-4005(91)80148-d.Suche in Google Scholar

13. Ogita, M., Higo, K., Nakanishi, Y., Hatanaka, Y. Appl. Surf. Sci. 2001, 175, 721–725; https://doi.org/10.1016/s0169-4332(01)00080-0.Suche in Google Scholar

14. Zacherle, T., Schmidt, P. C., Martin, M. Phys. Rev. B 2013, 87, 235206; https://doi.org/10.1103/physrevb.87.235206.Suche in Google Scholar

15. Varley, J. B., Weber, J. R., Janotti, A., van de Walle, C. G. Appl. Phys. Lett. 2010, 97, 142106; https://doi.org/10.1063/1.3499306.Suche in Google Scholar

16. Víllora, E. G., Shimamura, K., Yoshikawa, Y., Ujiie, T., Aoki, K. Appl. Phys. Lett. 2008, 92, 202120; https://doi.org/10.1063/1.2919728.Suche in Google Scholar

17. Kyrtsos, A., Matsubara, M., Bellotti, E. Phys. Rev. B 2017, 95, 245202; https://doi.org/10.1103/physrevb.95.245202.Suche in Google Scholar

18. Blanco, M. A., Sahariah, M. B., Jiang, H., Costales, A., Pandey, R. Phys. Rev. B 2005, 72, 184103; https://doi.org/10.1103/physrevb.72.184103.Suche in Google Scholar

19. Peelaers, H., Lyons, J. L., Varley, J. B., van de Walle, C. G. APL Mater. 2019, 7, 022519; https://doi.org/10.1063/1.5063807.Suche in Google Scholar

20. Galazka, Z., Uecker, R., Klimm, D., Irmscher, K., Naumann, M., Pietsch, M., Kwasniewski, A., Bertram, R., Ganschow, S., Bickermann, M. ECS J. Solid State Sci. Technol. 2017, 6, Q3007–Q3011; https://doi.org/10.1149/2.0021702jss.Suche in Google Scholar

21. Uhlendorf, J., Galazka, Z., Schmidt, H. Appl. Phys. Lett. 2021, 119, 242106; https://doi.org/10.1063/5.0071729.Suche in Google Scholar

22. Uhlendorf, J., Schmidt, H. Phys. Rev. Mater. 2023, 7, 093402.10.1088/1742-5468/acf8baSuche in Google Scholar

23. Kuramata, A., Koshi, K., Watanabe, S., Yamaoka, Y., Masui, T., Yamakoshi, S. Jpn. J. Appl. Phys. 2016, 55, 1202A2; https://doi.org/10.7567/jjap.55.1202a2.Suche in Google Scholar

24. Galazka, Z., Irmscher, K., Schewski, R., Hanke, I. M., Pietsch, M., Ganschow, S., Klimm, D., Dittmar, A., Fiedler, A., Schroeder, T., Bickermann, M. J. Cryst. Growth 2020, 529, 1–8.10.1016/j.jcrysgro.2019.125297Suche in Google Scholar

25. Mehrer, H. Diffusion in Solids – Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer: Berlin, Heidelberg, 2007.10.1007/978-3-540-71488-0Suche in Google Scholar

Received: 2023-10-25
Accepted: 2023-11-20
Published Online: 2024-04-05
Published in Print: 2024-04-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Editorial
  4. Thomas Bredow zum 60. Geburtstag gewidmet
  5. Research Articles
  6. Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
  7. Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
  8. Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
  9. Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl featuring the small [V6IVAs8IIIO26]4– cluster anion
  10. Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
  11. mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
  12. A molecular mechanics implementation of the cyclic cluster model
  13. A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
  14. Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
  15. Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
  16. High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
  17. Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
  18. Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19
  19. From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
  20. A Hybrid Monte Carlo study of argon solidification
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0091/html
Button zum nach oben scrollen