Abstract
The ternary auride Ba3Mg4Au4 was synthesized from the elements in a sealed tantalum ampoule. The Ba3Mg4Au4 structure was refined from single-crystal X-ray diffractometer data: Gd3Cu4Ge4 type, space group Immm, a = 447.95(10), b = 843.07(18), c = 1564.2(5) pm, wR2 = 0.0935, 680 F2 values, 23 variables. Ba3Mg4Au4 is a 1:2 intergrowth structure of BaAu2-(AlB2 type) and BaMg2Au-(MgCuAl2 type) related slabs. The two crystallographically independent gold atoms both have tricapped trigonal prismatic coordination, i.e. Au1@Mg6Ba3 and Au2@Mg2Ba6Au. The Au–Mg (284–303 pm) and Ba–Au (331–349 pm) distances cover small ranges that are close to the sums of the covalent radii. The magnesium atoms in the MgCuAl2-related slab show Mg–Mg distances of 320–332 pm. The different coloring variants of the Gd3Cu4Ge4 type are briefly discussed.
Dedicated to Professor Thomas Bredow of the University of Bonn on the occasion of his 60th birthday.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Rodewald, U.C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar
2. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park: Ohio, USA, 2022.Suche in Google Scholar
3. Kalychak, Ya. M., Zaremba, V. I., Pöttgen, R., Lukachuk, M., Hoffmann, R.-D. Rare earth-transition metal-indides. In Handbook on the Physics and Chemistry of Rare Earths; GschneiderJr.K. A., Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005, pp. 1–133. Chapter 218.10.1016/S0168-1273(04)34001-8Suche in Google Scholar
4. Skolozdra, R. V. Stannides of the rare-earth and transition metals. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds.; Elsevier: Amsterdam, Vol. 24, 1997, pp. 399–517. Chapter 164.10.1016/S0168-1273(97)24009-2Suche in Google Scholar
5. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677.10.1515/znb-2006-0607Suche in Google Scholar
6. Pöttgen, R., Hoffmann, R.-D. Metall 2004, 58, 557.10.1093/fs/58.4.557Suche in Google Scholar
7. Cirafici, S., Palenzona, A., Canepa, F. J. Less-Common Met. 1985, 107, 179; https://doi.org/10.1016/0022-5088(85)90253-x.Suche in Google Scholar
8. Fornasini, M. L., Merlo, F., Napoletano, M., Pani, M. J. Phase Equilib. 2002, 23, 57; https://doi.org/10.1361/105497102770332216.Suche in Google Scholar
9. Hoffmann, R.-D., Pöttgen, R., Landrum, G. A., Dronskowski, R., Künnen, B., Kotzyba, G. Z. Anorg. Allg. Chem. 1999, 625, 789.10.1002/(SICI)1521-3749(199905)625:5<789::AID-ZAAC789>3.0.CO;2-QSuche in Google Scholar
10. Kersting, M., Johnscher, M., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2013, 639, 707; https://doi.org/10.1002/zaac.201200538.Suche in Google Scholar
11. Kersting, M., Matar, S. F., Schwickert, C., Pöttgen, R. Z. Naturforsch. 2012, 67b, 61; https://doi.org/10.1515/znb-2012-0111.Suche in Google Scholar
12. Zaremba, R., Rodewald, U.Ch., Hoffmann, R.-D., Pöttgen, R. Monatsh. Chem. 2007, 138, 523; https://doi.org/10.1007/s00706-007-0663-9.Suche in Google Scholar
13. Pöttgen, R. The Gd4RhIn type: crystal chemistry and properties. In Handbook on the Physics and Chemistry of Rare Earths; Pecharsky, V. K., Bünzli, J.-C., Eds.; Elsevier: North-Holland, Amsterdam, Vol. 58, 2020, pp. 1–38. Chapter 315.10.1016/bs.hpcre.2020.09.001Suche in Google Scholar
14. Reimann, M. K., Pöttgen, R. Z. Kristallogr. 2022, 237, 57.Suche in Google Scholar
15. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133.Suche in Google Scholar
16. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
17. Palatinus, L. Acta Crystallogr. 2013, B69, 1; https://doi.org/10.1107/s0108768112051361.Suche in Google Scholar PubMed
18. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
19. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
20. Reimann, M. K. Synthese, Strukturchemie und physikalische Eigenschaften ternärer intermetallischer Magnesiumverbindungen. Dissertation, Universität Münster, Münster, 2023.Suche in Google Scholar
21. Perlitz, H., Westgren, A. Ark. Kemi, Mineral. Geol. B 1943, 16, 1.Suche in Google Scholar
22. Heying, B., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2005, 60b, 491; https://doi.org/10.1515/znb-2005-0502.Suche in Google Scholar
23. Bruzzone, G., Bonino, G. B. Atti Accad. Naz. Lincei, Cl. Sci. Fis., Mat. Nat., Rend. 1970, 48, 235.Suche in Google Scholar
24. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
25. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. Ch., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Suche in Google Scholar
26. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
27. Shannon, R. D. Acta Crystallogr. 1976, A32, 751; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
28. Schmidbaur, H., Ed. Gold: Chemistry, Biochemistry and Technology; John Wiley & Sons LTD: Chichester, England, 1999.Suche in Google Scholar
29. Jansen, M. Solid State Sci. 2005, 7, 1464; https://doi.org/10.1016/j.solidstatesciences.2005.06.015.Suche in Google Scholar
30. Jansen, M. Chem. Soc. Rev. 2008, 37, 1826; https://doi.org/10.1039/b708844m.Suche in Google Scholar PubMed
31. Rieger, W. Monatsh. Chem. 1970, 101, 449; https://doi.org/10.1007/bf00910230.Suche in Google Scholar
32. Wawrzyńska, E., Penc, B., Stüsser, N., Szytuła, A., Tomkowicz, Z. Solid State Commun. 2003, 126, 527; https://doi.org/10.1016/s0038-1098(03)00184-4.Suche in Google Scholar
33. Sprenger, H. J. Less-Common Met. 1974, 34, 39; https://doi.org/10.1016/0022-5088(74)90215-x.Suche in Google Scholar
34. Nagata, Y., Sodeyama, K., Yashiro, S., Sasaki, H., Samata, H., Uchida, T., Lan, M. D. J. Alloys Compd. 1998, 281, 112; https://doi.org/10.1016/s0925-8388(98)00780-4.Suche in Google Scholar
35. Guo, S.-P., You, T.-S., Bobev, S. Inorg. Chem. 2012, 51, 3119; https://doi.org/10.1021/ic202591j.Suche in Google Scholar PubMed
36. Suen, N.-T., Guo, S.-P., Hoos, J., Bobev, S. Inorg. Chem. 2018, 57, 5632; https://doi.org/10.1021/acs.inorgchem.8b00583.Suche in Google Scholar PubMed
37. Allescher-Last, H., Schuster, H.-U. Z. Naturforsch. 1993, 48b, 240; https://doi.org/10.1515/znb-1993-0221.Suche in Google Scholar
38. Skolozdra, R. V., Komarovskaya, L. P., Akselrud, L. G. Ukr. Fiz. Zh. Russ. Ed. 1984, 29, 1395.Suche in Google Scholar
39. Monconduit, L., Belin, C. Acta Crystallogr. C 1999, 55, 1199; https://doi.org/10.1107/s0108270199006927.Suche in Google Scholar
40. Schäfer, M. C., Suen, N. T., Bobev, S. Dalton Trans. 2014, 43, 16889; https://doi.org/10.1039/c4dt02220c.Suche in Google Scholar PubMed
41. Mishra, T., Schwickert, C., Pöttgen, R. Monatsh. Chem. 2011, 142, 973; https://doi.org/10.1007/s00706-011-0569-4.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification
Artikel in diesem Heft
- Frontmatter
- In this issue
- Editorial
- Thomas Bredow zum 60. Geburtstag gewidmet
- Research Articles
- Ni2Mo3N: crystal structure, thermal properties, and catalytic activity for ammonia decomposition
- Ionic conductivity of nanocrystalline γ-AgI prepared by high-energy ball milling
- Ba3Mg4Au4 – a ternary auride composed of BaAu2- and BaMg2Au-related slabs
- Solvothermal synthesis and selected properties of {[Ni(dien)2]3[V6As8O26]}2+·2 Cl– featuring the small [V6IVAs8IIIO26]4– cluster anion
- Ab initio calculations of the chemisorption of atomic H and O on Pt and Ir metal and on bimetallic Pt x Ir y surfaces
- mcGFN-FF: an accurate force field for optimization and energetic screening of molecular crystals
- A molecular mechanics implementation of the cyclic cluster model
- A computational characterization of N-heterocyclic carbenes for catalytic and nonlinear optical applications
- Oxygen diffusion in β-Ga2O3 single crystals under different oxygen partial pressures at 1375 °C
- Origin of extended visible light absorption in nitrogen-doped CuTa2O6 perovskites: the role of copper defects
- High-temperature all-solid-state batteries with LiBH4 as electrolyte – a case study exploring the performance of TiO2 nanorods, Li4Ti5O12 and graphite as active materials
- Cu2Mg5Sn5Se16 – the first selenospinel of the A2B5C5X16 type
- Crystal structures and crystallographic classification of titanium silicophosphates – with a note on structure and composition of silicophosphates “M3P5SiO19”
- From Cs[C2N3] to Cs3[C6N9] – a thermal and structural investigation
- A Hybrid Monte Carlo study of argon solidification