Startseite The first-order phase transition of melting for molecular crystals by Frost–Kalkwarf vapor- and sublimation-pressure equations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The first-order phase transition of melting for molecular crystals by Frost–Kalkwarf vapor- and sublimation-pressure equations

  • Akira Matsumoto EMAIL logo
Veröffentlicht/Copyright: 15. Oktober 2021

Abstract

Thermodynamic quantities in the coexistence of the liquid and the solid phases for Frost–Kalkwarf vapor- and sublimation-pressure equations are investigated at an isobaric process. Gibbs free energy changes in the gaseous and the liquid phases, ΔG GL, has been derived from the Frost–Kalkwarf vapor-pressure equation. Similarly, Gibbs free energy changes in the gaseous and the solid phases, ΔG GS, may be estimated by the Frost–Kalkwarf sublimation-pressure equations which are determined by data of sublimation pressures and temperatures for 24 substances. In coexistence between the liquid and the solid phases, Gibbs free energy changes in the liquid and the solid phases, ΔG LS, may be expressed as the difference of ΔG GL and ΔG GS. The melting temperatures and enthalpy changes of melting are evaluated by numerical calculations for 24 substances. The behaviors of H2O for the neighborhood at the melting and the boiling points are investigated. The Gibbs free energy indicates two polygonal lines. Entropy, volume and enthalpy jump from the solid to the liquid phase at the melting point and from the liquid to the gaseous phase at the boiling point. The heat capacity does not diverge to infinity but shows a finite discrepancy at the melting and the boiling points. This suggests that first-order phase transitions at the melting and the boiling points may occur.


Corresponding author : Akira Matsumoto, Department of Molecular Sciences, Faculty of Science, Osaka Prefecture University, Gakuencho 1-1, Nakaku, Sakai Osaka, 599-8531, Japan, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Lustig, “On the Lennard-Jones and Devonshire theory for solid state thermodynamics,” Mol. Phys., vol. 115, p. 1362, 2117.10.1080/00268976.2017.1294715Suche in Google Scholar

[2] A. Matsumoto, “First and second-phases transisions of gases at isobaric process; Lennard-Jones (9,6) gases with a hard core,” Z. Naturforsch. A, vol. 69a, p. 665, 2014.10.5560/zna.2014-0060Suche in Google Scholar

[3] H. Fatoorehchi, R. Rach, and H. Sakhaeinia, “Explicit Frost-Kalkwarf type equations for calculation of vapour pressure of liquids from triple to critical point by the Adomian decomposition method,” Can. J. Chem. Eng., vol. 95, p. 2199, 2017. https://doi.org/10.1002/cjce.22853.Suche in Google Scholar

[4] R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids, 3rd ed., New York, McGraw-Hill, 1977, pp. 181–197, and Appendix.Suche in Google Scholar

[5] A. A. Frost and D. R. Kalkwarf, “A semi‐empirical equation for the vapor pressure of liquids as a function of temperature,” J. Chem. Phys., vol. 21, p. 264, 1953. https://doi.org/10.1063/1.1698871.Suche in Google Scholar

[6] A. Matsumoto, “Thermodynamic quantities of the Frost-Kalkwarf vapor-pressure equation,” Fluid Phase Equil., vol. 172, p. 105, 2000. https://doi.org/10.1016/s0378-3812(00)00379-4.Suche in Google Scholar

[7] J. E. Mayer and M. G. Mayer, Statistical Mechanics, New York, John Wiley & Sons, Inc., 1940, p. 266.Suche in Google Scholar

[8] H. Takahasi, “Eine einfache methode zur behandlung der statistischen mechanik eindimensionaler substanzen,” Proc. Phys.-Math. Soc. Jpn., vol. 24, p. 60, 1942.Suche in Google Scholar

[9] D. R. Stull, “Vapor pressure of pure substances. Organic and inorganic compounds,” Ind. Eng. Chem., vol. 39, p. 517, 1947. https://doi.org/10.1021/ie50448a022.Suche in Google Scholar

[10] D. R. Stull, “Inorganic compounds,” Ind. Eng. Chem., vol. 39, p. 540, 1947. https://doi.org/10.1021/ie50448a023.Suche in Google Scholar

[11] C. E. Bryson, V. Cazcarra, and L. L. Levenson, “Sublimation rates and vapor pressures of water, carbon dioxide, nitrous oxide, and xenon,” J. Chem. Eng. Data, vol. 19, p. 107, 1974. https://doi.org/10.1021/je60061a021.Suche in Google Scholar

[12] E. A. Harlacher and W. G. Braun, “A four-parameter extension of the theorem of corresponding states,” Ind. Eng. Chem. Process Des. Dev., vol. 9, p. 479, 1970. https://doi.org/10.1021/i260035a018.Suche in Google Scholar

[13] F. D. Rossini, Selected Values of Chemical Thermodynamic Properties, Washington, U.S. Government Publishing Office, 1952.Suche in Google Scholar

[14] Landolt-Börnstein Tables, 6 Aufl., Band, 4 Teil, Kalorische Zustansgrössen, Berlin, Springer-Verlag, 1961.Suche in Google Scholar

[15] P. W. Atkins, Physical Chemistry, 6th ed. Oxford, Oxford University Press, 1998, p. 153.Suche in Google Scholar

Received: 2021-07-21
Accepted: 2021-09-20
Published Online: 2021-10-15
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0203/html
Button zum nach oben scrollen