Abstract
On employing linearized Vlasov–Maxwell equations the solution of relativistic electromagnetic extraordinary mode is investigated for the wave propagating perpendicular to a uniform ambient magnetic field (in the presence of arbitrary magnetic field limit i.e., ω > Ω > k.v) in partially degenerate (i.e., for T
F ≥ T and T ≠ 0) electron plasma under long wavelength limit (ω ≫ k.v). Due to the inclusion of weak quantum degeneracy the relativistic Fermi–Dirac distribution function is expanded under the relativistic limit (
-
Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
Appendix: Series expansion of hypergeometric functions and calculation of momentum integral
The momentum integral used in Eqs. (5)–(7) is:
References
[1] N. Roy, S. S. Tasnim, and A. A. Mamun, “Solitary waves and double layers in an ultra-relativistic degenerate dusty electron-positron-ion plasma,” Phys. Plasmas, vol. 19, 2012, Art no. 033705. https://doi.org/10.1063/1.3688877.Suche in Google Scholar
[2] L. Nahar, M. S. Zobaer, N. Roy, and A. A. Mamun, “ Ion-acoustic K-dV and mK-dV solitons in a degenerate electron-ion dense plasma,” Phys. Plasmas, vol. 20, 2013, Art no. 022304. https://doi.org/10.1063/1.4790519.Suche in Google Scholar
[3] M. H. Thoma, “Ultrarelativistic electron–positron plasma,” Eur. Phys. J. D, vol. 55, p. 271, 2009. https://doi.org/10.1140/epjd/e2009-00077-9.Suche in Google Scholar
[4] S. A. Khan, “Coupled modes in magnetized dense plasma with relativistic-degenerate electrons,” Phys. Plasmas, vol. 19, 2012, Art no. 014506. https://doi.org/10.1063/1.3677782.Suche in Google Scholar
[5] G. B. van Albada, “On the origin of the heavy elements,” Astrophys. J., vol. 105, p. 393, 1947. https://doi.org/10.1086/144914.Suche in Google Scholar
[6] M. Zaghoo, T. R. Boehly, J. R. Rygg, P. M. Celliers, S. X. Hu, and G. W. Collins, “Breakdown of Fermi degeneracy in the simplest liquid metal,” arXiv:1901.11410 [physics.plasm-ph], 2019.10.1103/PhysRevLett.122.085001Suche in Google Scholar PubMed
[7] G. E. Morfill, M. Rubin-Zuzic, H. Rothermel, et al.., “Highly resolved fluid flows: “liquid plasmas” at the kinetic level,” Phys. Rev. Lett., vol. 92, p. 175004, 2004. https://doi.org/10.1103/physrevlett.92.175004.Suche in Google Scholar PubMed
[8] S. Son and N. J. Fisch, “Ignition regime for fusion in a degenerate plasma,” Phys. Lett., vol. 356, p. 72, 2006. https://doi.org/10.1016/j.physleta.2006.03.065.Suche in Google Scholar
[9] A. C. Hayes, M. E. Gooden, E. Henry, et al.., “Plasma stopping-power measurements reveal transition from non-degenerate to degenerate plasmas,” Nat. Phys., vol. 16, pp. 432–437, 2020. https://doi.org/10.1038/s41567-020-0790-3.Suche in Google Scholar
[10] N. Maafa, “Dispersion relation in a plasma with arbitrary degeneracy,” Phys. Scripta, vol. 48, p. 351, 1993. https://doi.org/10.1088/0031-8949/48/3/012.Suche in Google Scholar
[11] D. B. Melrose and A. Mushtaq, “Dispersion in a thermal plasma including arbitrary degeneracy and quantum recoil,” Phys. Rev. E, vol. 82, 2010, Art no. 056402. https://doi.org/10.1103/physreve.82.056402.Suche in Google Scholar
[12] D. B. Melrose and A. Mushtaq, “Plasma dispersion function for a Fermi–Dirac distribution,” Phys. Plasmas, vol. 17, p. 122103, 2010. https://doi.org/10.1063/1.3528272.Suche in Google Scholar
[13] F. Haas and S. Mahmood, “Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy,” Phys. Rev. E, vol. 92, 2015, Art no. 053112. https://doi.org/10.1103/physreve.92.053112.Suche in Google Scholar
[14] B. Eliasson and P. K. Shukla, “Nonlinear quantum fluid equations for a finite temperature Fermi plasma,” Phys. Sripta, vol. 78, 2008, Art no. 025503. https://doi.org/10.1088/0031-8949/78/02/025503.Suche in Google Scholar
[15] B. Eliasson and M. A. Moghanjoughi, “Finite temperature static charge screening in quantum plasmas,” Phys. Lett., vol. 380, p. 2518, 2016. https://doi.org/10.1016/j.physleta.2016.05.043.Suche in Google Scholar
[16] M. A. Moghanjoughi, “Generalized sheath criterion for arbitrary degenerate plasmas,” Phys. Plasmas, vol. 24, 2017, Art no. 012113. https://doi.org/10.1063/1.4975078.Suche in Google Scholar
[17] J. Bergman and B. Eliasson, “Linear wave dispersion laws in unmagnetized relativistic plasma: analytical and numerical results,” Phys. Plasmas, vol. 8, p. 1482, 2001. https://doi.org/10.1063/1.1358313.Suche in Google Scholar
[18] N. L. Tsintsadze, A. Rasheed, H. A. Shah, and G. Murtaza, “Nonlinear screening effect in an ultrarelativistic degenerate electron-positron gas,” Phys. Plasmas, vol. 16, p. 112307, 2009. https://doi.org/10.1063/1.3264737.Suche in Google Scholar
[19] A. Rasheed, N. L. Tsintsadze, and G. Murtaza, “Ion-acoustic solitary waves in ultra-relativistic degenerate pair-ion plasmas,” Phys. Plasmas, vol. 18, p. 112701, 2011. https://doi.org/10.1063/1.3657431.Suche in Google Scholar
[20] G. Abbas, Z. Iqbal, and G. Murtaza, “On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma,” Phys. Plasmas, vol. 22, 2015, Art no. 032110. https://doi.org/10.1063/1.4916050.Suche in Google Scholar
[21] H. Farooq, M. Sarfraz, Z. Iqbal, G. Abbas, and H. A. Shah, “Parallel propagating modes and anomalous spatial damping in the ultra-relativistic electron plasma with arbitrary degeneracy,” Phys. Plasmas, vol. 26, p. 110301, 2017. https://doi.org/10.1088/1674-1056/26/11/110301.Suche in Google Scholar
[22] M. Sarfraz, H. Farooq, G. Abbas, S. Noureen, Z. Iqbal, and A. Rasheed, “Dispersion characteristics of anisotropic unmagnetized ultra-relativistic transverse plasma wave with arbitrary electron degeneracy,” Phys. Plasmas, vol. 25, 2018, Art no. 032106. https://doi.org/10.1063/1.5009709.Suche in Google Scholar
[23] V. P. Silin, “On the electromagnetic properties of a relativistic plasma,” J. Exp. Theor. Phys., vol. 38, pp. 1577–1583, 1960.Suche in Google Scholar
[24] J. T. Mendonca, “Wave kinetics of relativistic quantum plasmas,” Phys. Plasmas, vol. 18, 2011, Art no. 062101. https://doi.org/10.1063/1.3590865.Suche in Google Scholar
[25] P. K. Shukla and B. Eliasson, “Colloquium: Nonlinear collective interactions in quantum plasmas with degenerate electron fluids,” Rev. Mod. Phys., vol. 83, p. 885, 2011. https://doi.org/10.1103/revmodphys.83.885.Suche in Google Scholar
[26] S. Noureen, G. Abbas, and M. Sarfraz, “On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 25, 2018, Art no. 012123. https://doi.org/10.1063/1.5010745.Suche in Google Scholar
[27] S. Noureen, G. Abbas, and H. Farooq, “On the high frequency perpendicular propagating waves in ultra-relativistic fully degenerate electron plasma,” Phys. Plasmas, vol. 24, 2017, Art no. 092103. https://doi.org/10.1063/1.4986021.Suche in Google Scholar
[28] S. Noureen, “Propagation characteristics of weakly magnetized electromagnetic modes in a relativistic partially degenerate electron plasma,” Indian J. Phys., 2021. https://doi.org/10.1007/s12648-021-02046-9.Suche in Google Scholar
[29] A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Principles of Plasma Electro-Dynamics, Berlin, Heidelberg, Springer-Verlag, 1984.10.1007/978-3-642-69247-5Suche in Google Scholar
[30] F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, New York, Plenum, 1984.10.1007/978-1-4757-5595-4Suche in Google Scholar
[31] G. Abbas, M. F. Bashir, M. Ali, and G. Murtaza, “Study of high frequency parallel propagating modes in a weakly magnetized relativistic degenerate electron plasma,” Phys. Plasmas, vol. 19, 2012, Art no. 032103. https://doi.org/10.1063/1.3690099.Suche in Google Scholar
[32] G. Abbas, G. Murtaza, and R. J. Kingham, “High frequency electromagnetic modes in a weakly magnetized relativistic electron plasma,” Phys. Plasmas, vol. 17, 2020, Art no. 072105.10.1063/1.3460345Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Study of shocks in a nonideal dusty gas using Maslov, Guderley, and CCW methods for shock exponents
- Nonlinear excitations and dynamic features of dust ion-acoustic waves in a magnetized electron–positron–ion plasma
- Bifurcation analysis in a predator–prey model with strong Allee effect
- Hydrodynamics
- Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure
- Quantum Theory
- Spin coherent states, Bell states, spin Hamilton operators, entanglement, Husimi distribution, uncertainty relation and Bell inequality
- Solid State Physics & Materials Science
- Tailoring the optical properties of tin oxide thin films via gamma irradiation
- Thermodynamics & Statistical Physics
- Impact of partially thermal electrons on the propagation characteristics of extraordinary mode in relativistic regime
- The first-order phase transition of melting for molecular crystals by Frost–Kalkwarf vapor- and sublimation-pressure equations
- Mathieu-state reordering in periodic thermodynamics
- Corrigendum
- Corrigendum to: Study of ferrofluid flow and heat transfer between cone and disk
Artikel in diesem Heft
- Frontmatter
- Dynamical Systems & Nonlinear Phenomena
- Study of shocks in a nonideal dusty gas using Maslov, Guderley, and CCW methods for shock exponents
- Nonlinear excitations and dynamic features of dust ion-acoustic waves in a magnetized electron–positron–ion plasma
- Bifurcation analysis in a predator–prey model with strong Allee effect
- Hydrodynamics
- Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure
- Quantum Theory
- Spin coherent states, Bell states, spin Hamilton operators, entanglement, Husimi distribution, uncertainty relation and Bell inequality
- Solid State Physics & Materials Science
- Tailoring the optical properties of tin oxide thin films via gamma irradiation
- Thermodynamics & Statistical Physics
- Impact of partially thermal electrons on the propagation characteristics of extraordinary mode in relativistic regime
- The first-order phase transition of melting for molecular crystals by Frost–Kalkwarf vapor- and sublimation-pressure equations
- Mathieu-state reordering in periodic thermodynamics
- Corrigendum
- Corrigendum to: Study of ferrofluid flow and heat transfer between cone and disk