Home Tailoring the optical properties of tin oxide thin films via gamma irradiation
Article
Licensed
Unlicensed Requires Authentication

Tailoring the optical properties of tin oxide thin films via gamma irradiation

  • Ateyyah M. Al-Baradi EMAIL logo , Ahmed A. Atta , Ali Badawi ORCID logo EMAIL logo , Saud A. Algarni , Abdulraheem S. A. Almalki , Sameh I. Ahmed , Ahmed Ashour , Abdullah SA. Alsubaie , Ali M. Hassanien and Mahmoud M. El-Nahass
Published/Copyright: October 4, 2021

Abstract

In the current work, the optical properties of tin oxide thin films have been tailored via gamma irradiation for energy applications. The effect of Gamma radiation (50, 100, 150, 200 and 250 kGy) on the microstructural, absorption and oscillator parameters of SnO2 thin films has been investigated. XRD results reveal that the SnO2 films have the symmetry of the space group P42/mnm belonging to the tetragonal system. The crystallite size of γ-irradiated SnO2 thin film slightly increases as the irradiation dose increases. The allowed optical band gaps are estimated by applying various methods such as Tauc’s method, derivation of absorption spectrum fitting and absorption spectrum fitting approaches. The dispersion parameters are extracted from the dispersion curve of the real part of the refractive index. The single-effective-oscillator and Drude models for free charge carrier absorption are applied to obtain the dispersion parameters before and after γ-irradiation.


Corresponding authors : Ateyyah M. Al-Baradi, Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia, E-mail: ; and Ali Badawi, Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; and Department of Physics, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia, E-mail:

Funding source: Deanship of Scientific Research, Taif University, KSA

Award Identifier / Grant number: 1-440-6136

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Deanship of Scientific Research, Taif University, KSA [research project number: 1 - 440 - 6136].

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

[1] M. O. Orlandi, Tin Oxide Materials: Synthesis, Properties, and Applications, Amsterdam, Netherlands, Elsevier, 2020, pp. 11–39.10.1016/B978-0-12-815924-8.00001-3Search in Google Scholar

[2] X. Wang, H. Fan, and P. Ren, “UV light-assisted synthesis of coral SnO2: characterization and its enhanced photocatalytic properties,” Colloids Surf., A, vol. 402, pp. 53–59, 2012. https://doi.org/10.1016/j.colsurfa.2012.03.018.Search in Google Scholar

[3] S. Kaya, S. Abubakar, and E. Yilmaz, “Co-60 gamma irradiation influences on device characteristics of n-SnO2/p-Si heterojunction diodes,” Nucl. Instrum. Methods Phys. Res. B, vol. 445, pp. 63–68, 2019. https://doi.org/10.1016/j.nimb.2019.03.013.Search in Google Scholar

[4] S. Tingting, Z. Fuchun, and Z. Weihu, “Density functional theory study on the electronic structure and optical properties of SnO2,” Rare Met. Mater. Eng., vol. 44, pp. 2409–2414, 2015. https://doi.org/10.1016/s1875-5372(16)30031-5.Search in Google Scholar

[5] J. H. Bang, N. Lee, A. Mirzaei, et al.., “Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films,” Ceram. Int., vol. 45, pp. 7723–7729, 2019. https://doi.org/10.1016/j.ceramint.2019.01.074.Search in Google Scholar

[6] S. H. Lee, D. M. Hoffman, A. J. Jacobson, and T. R. Lee, “Transparent, homogeneous tin oxide (SnO2) thin films containing SnO2-coated gold nanoparticles,” Chem. Mater., vol. 25, pp. 4697–4702, 2013. https://doi.org/10.1021/cm402098n.Search in Google Scholar

[7] L. K. Gaur, M. C. Mathpal, P. Kumar, et al.., “Observations of phonon anharmonicity and microstructure changes by the laser power dependent Raman spectra in Co doped SnO2 nanoparticles,” J. Alloys Compd., vol. 831, pp. 154836–154840, 2020. https://doi.org/10.1016/j.jallcom.2020.154836.Search in Google Scholar

[8] K. M. Abhirami, R. Sathyamoorthy, and K. Asokan, “Structural, optical and electrical properties of gamma irradiated SnO thin films,” Radiat. Phys. Chem., vol. 91, pp. 35–39, 2013. https://doi.org/10.1016/j.radphyschem.2013.05.030.Search in Google Scholar

[9] R. Qindeel, “Effect of gamma radiation on morphological & optical properties of ZnO nanopowder,” Results Phys., vol. 7, pp. 807–809, 2017. https://doi.org/10.1016/j.rinp.2017.02.003.Search in Google Scholar

[10] E. Atanassova, A. Paskaleva, R. Konakova, D. Spassov, and V. F. Mitin, “Influence of γ radiation on thin Ta2O5–Si structures,” Microelectron. J., vol. 32, pp. 553–562, 2001. https://doi.org/10.1016/s0026-2692(01)00043-x.Search in Google Scholar

[11] A. Sudha, T. K. Maity, and S. L. Sharma, “Effects of gamma irradiations on structural and electrical properties of indium oxide thin films prepared by thermal evaporation,” Mater. Lett., vol. 164, pp. 372–375, 2016. https://doi.org/10.1016/j.matlet.2015.11.003.Search in Google Scholar

[12] R. Gupta, R. P. Chauhan, and R. Kumar, “Influence of gamma radiation on the optical, morphological, structural and electrical properties of electrodeposited lead selenide nanowires,” Opt. Mater., vol. 99, p. 109538, 2020. https://doi.org/10.1016/j.optmat.2019.109538.Search in Google Scholar

[13] A. M. Hassanien, A. A. Atta, M. M. El-Nahass, et al.., “Effect of annealing temperature on structural and optical properties of gallium oxide thin films deposited by RF-sputtering,” Opt. Quant. Electron., vol. 52, 2020, Art. no. 194. https://doi.org/10.1007/s11082-020-02306-8.Search in Google Scholar

[14] M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, and A. Tepore, “Optical absorption of tellurium suboxide thin film,” Phys. Status Solidi A, vol. 136, pp. K101–K104, 1993. https://doi.org/10.1002/pssa.2211360236.Search in Google Scholar

[15] A. Alhuthali, M. M. El-Nahass, A. A. Atta, M. M. AbdEl-Raheem, K. M. Elsabawy, and A. M. Hassanien, “Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique,” J. Lumin., vol. 158, pp. 165–171, 2015. https://doi.org/10.1016/j.jlumin.2014.09.044.Search in Google Scholar

[16] M. M. El-Nahass, A. A. Atta, M. M. Abd El-Raheem, and A. M. Hassanien, “Structural and optical properties of DC Sputtered Cd2SnO4 nanocrystalline films,” J. Alloys Compd., vol. 585, pp. 1–6, 2014. https://doi.org/10.1016/j.jallcom.2013.09.079.Search in Google Scholar

[17] T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite,” Powder Diffr., vol. 29, pp. S13–S18, 2014. https://doi.org/10.1017/s0885715614000840.Search in Google Scholar

[18] D. H. O. Machado, J. H. D. da Silva, A. Tabata, and L. V. A. Scalvi, “Influence of thermal annealing on the properties of evaporated Er-doped SnO2,” Mater. Res. Bull., vol. 120, p. 110585, 2019. https://doi.org/10.1016/j.materresbull.2019.110585.Search in Google Scholar

[19] A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “Structural studies of Rutile-Type metal dioxides,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, pp. 373–380, 1997. https://doi.org/10.1107/S0108768197001468.Search in Google Scholar

[20] T. J. B. Holland and S. A. T. Redfern, “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineral. Mag., vol. 61, pp. 65–77, 1997. https://doi.org/10.1180/minmag.1997.061.404.07.Search in Google Scholar

[21] A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, p. 978, 1939. https://doi.org/10.1103/physrev.56.978.Search in Google Scholar

[22] K. M. Abhirami, R. Sathyamoorthy, and K. Asokan, “Structural, optical and electrical properties of gamma irradiated SnO thin films,” Radiat. Phys. Chem., vol. 91, pp. 35–39, 2013. https://doi.org/10.1016/j.radphyschem.2013.05.030.Search in Google Scholar

[23] L. Escobar-Alarcón, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci., vol. 254, pp. 412–415, 2007.10.1016/j.apsusc.2007.07.052Search in Google Scholar

[24] D. Souri and Z. E. Tahan, “A new method for the determination of optical band gap and the nature of optical transitions in semiconductors,” Appl. Phys. B, vol. 119, pp. 273–279, 2015. https://doi.org/10.1007/s00340-015-6053-9.Search in Google Scholar

[25] A. A. Ali, Y. S. Rammah, R. El-Mallawany, and D. Souri, “FTIR and UV spectra of pentaternary borate glasses,” Measurement, vol. 105, pp. 72–77, 2017. https://doi.org/10.1016/j.measurement.2017.04.010.Search in Google Scholar

[26] Y. S. Rammah, F. I. El-Agawany, K. A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, “FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses,” J. Mater. Sci. Mater. Electron., vol. 31, pp. 9099–9113, 2020. https://doi.org/10.1007/s10854-020-03440-5.Search in Google Scholar

[27] M. M. El-Nahass, A. M. Hassanien, A. Ahmed, et al.., “Gamma irradiation effects on structural and optical properties of amorphous and crystalline Nb2O5 thin films,” Opt. Quant. Electron., vol. 50, pp. 313–327, 2018. https://doi.org/10.1007/s11082-018-1580-3.Search in Google Scholar

[28] S. H. Wemple and M. DiDomenico Jr, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B, vol. 3, pp. 1338–1350, 1971. https://doi.org/10.1103/physrevb.3.1338.Search in Google Scholar

[29] S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B, vol. 7, pp. 3767–3777, 1973. https://doi.org/10.1103/physrevb.7.3767.Search in Google Scholar

[30] D. Edward Palik, Handbook of Optical Constants of Solids, New York, Academic Press, 1985, p. 265.Search in Google Scholar

[31] R. J. Bell, M. A. Ordal, and R. W. Alexander Jr., “Equations linking different sets of optical properties for nonmagnetic materials,” Appl. Opt., vol. 24, pp. 3680–3682, 1985. https://doi.org/10.1364/ao.24.003680.Search in Google Scholar PubMed

[32] R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett., vol. 5, pp. 17–19, 1964. https://doi.org/10.1063/1.1754022.Search in Google Scholar

[33] C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B, vol. 2, pp. 2045–2048, 1970. https://doi.org/10.1103/physrevb.2.2045.Search in Google Scholar

[34] L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, and M. Vlček, “Optical properties of amorphous As–Se and Ge–As–Se thin films,” Mater. Lett., vol. 39, pp. 122–128, 1999. https://doi.org/10.1016/s0167-577x(98)00227-4.Search in Google Scholar

[35] R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B, vol. 21, p. 640, 2004. https://doi.org/10.1364/josab.21.000640.Search in Google Scholar

[36] A. B. Khatibani and S. M. Rozati, “Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber,” Bull. Mater. Sci., vol. 38, pp. 319–326, 2015. https://doi.org/10.1007/s12034-015-0880-5.Search in Google Scholar

[37] M. M. Rahman, H. A. Miran, Z.-T. Jiang, et al.., “Investigation of the post-annealing electromagnetic response of Cu-Co oxide coatings via optical measurement and computational modelling,” RSC Adv., vol. 7, pp. 16826–16835, 2017. https://doi.org/10.1039/c6ra25626k.Search in Google Scholar

Received: 2021-07-30
Accepted: 2021-09-19
Published Online: 2021-10-04
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0215/html
Scroll to top button