Startseite Tailoring the optical properties of tin oxide thin films via gamma irradiation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tailoring the optical properties of tin oxide thin films via gamma irradiation

  • Ateyyah M. Al-Baradi EMAIL logo , Ahmed A. Atta , Ali Badawi ORCID logo EMAIL logo , Saud A. Algarni , Abdulraheem S. A. Almalki , Sameh I. Ahmed , Ahmed Ashour , Abdullah SA. Alsubaie , Ali M. Hassanien und Mahmoud M. El-Nahass
Veröffentlicht/Copyright: 4. Oktober 2021

Abstract

In the current work, the optical properties of tin oxide thin films have been tailored via gamma irradiation for energy applications. The effect of Gamma radiation (50, 100, 150, 200 and 250 kGy) on the microstructural, absorption and oscillator parameters of SnO2 thin films has been investigated. XRD results reveal that the SnO2 films have the symmetry of the space group P42/mnm belonging to the tetragonal system. The crystallite size of γ-irradiated SnO2 thin film slightly increases as the irradiation dose increases. The allowed optical band gaps are estimated by applying various methods such as Tauc’s method, derivation of absorption spectrum fitting and absorption spectrum fitting approaches. The dispersion parameters are extracted from the dispersion curve of the real part of the refractive index. The single-effective-oscillator and Drude models for free charge carrier absorption are applied to obtain the dispersion parameters before and after γ-irradiation.


Corresponding authors : Ateyyah M. Al-Baradi, Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia, E-mail: ; and Ali Badawi, Department of Physics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; and Department of Physics, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia, E-mail:

Funding source: Deanship of Scientific Research, Taif University, KSA

Award Identifier / Grant number: 1-440-6136

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was funded by the Deanship of Scientific Research, Taif University, KSA [research project number: 1 - 440 - 6136].

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

[1] M. O. Orlandi, Tin Oxide Materials: Synthesis, Properties, and Applications, Amsterdam, Netherlands, Elsevier, 2020, pp. 11–39.10.1016/B978-0-12-815924-8.00001-3Suche in Google Scholar

[2] X. Wang, H. Fan, and P. Ren, “UV light-assisted synthesis of coral SnO2: characterization and its enhanced photocatalytic properties,” Colloids Surf., A, vol. 402, pp. 53–59, 2012. https://doi.org/10.1016/j.colsurfa.2012.03.018.Suche in Google Scholar

[3] S. Kaya, S. Abubakar, and E. Yilmaz, “Co-60 gamma irradiation influences on device characteristics of n-SnO2/p-Si heterojunction diodes,” Nucl. Instrum. Methods Phys. Res. B, vol. 445, pp. 63–68, 2019. https://doi.org/10.1016/j.nimb.2019.03.013.Suche in Google Scholar

[4] S. Tingting, Z. Fuchun, and Z. Weihu, “Density functional theory study on the electronic structure and optical properties of SnO2,” Rare Met. Mater. Eng., vol. 44, pp. 2409–2414, 2015. https://doi.org/10.1016/s1875-5372(16)30031-5.Suche in Google Scholar

[5] J. H. Bang, N. Lee, A. Mirzaei, et al.., “Effect of microwave irradiation on the electrical and optical properties of SnO2 thin films,” Ceram. Int., vol. 45, pp. 7723–7729, 2019. https://doi.org/10.1016/j.ceramint.2019.01.074.Suche in Google Scholar

[6] S. H. Lee, D. M. Hoffman, A. J. Jacobson, and T. R. Lee, “Transparent, homogeneous tin oxide (SnO2) thin films containing SnO2-coated gold nanoparticles,” Chem. Mater., vol. 25, pp. 4697–4702, 2013. https://doi.org/10.1021/cm402098n.Suche in Google Scholar

[7] L. K. Gaur, M. C. Mathpal, P. Kumar, et al.., “Observations of phonon anharmonicity and microstructure changes by the laser power dependent Raman spectra in Co doped SnO2 nanoparticles,” J. Alloys Compd., vol. 831, pp. 154836–154840, 2020. https://doi.org/10.1016/j.jallcom.2020.154836.Suche in Google Scholar

[8] K. M. Abhirami, R. Sathyamoorthy, and K. Asokan, “Structural, optical and electrical properties of gamma irradiated SnO thin films,” Radiat. Phys. Chem., vol. 91, pp. 35–39, 2013. https://doi.org/10.1016/j.radphyschem.2013.05.030.Suche in Google Scholar

[9] R. Qindeel, “Effect of gamma radiation on morphological & optical properties of ZnO nanopowder,” Results Phys., vol. 7, pp. 807–809, 2017. https://doi.org/10.1016/j.rinp.2017.02.003.Suche in Google Scholar

[10] E. Atanassova, A. Paskaleva, R. Konakova, D. Spassov, and V. F. Mitin, “Influence of γ radiation on thin Ta2O5–Si structures,” Microelectron. J., vol. 32, pp. 553–562, 2001. https://doi.org/10.1016/s0026-2692(01)00043-x.Suche in Google Scholar

[11] A. Sudha, T. K. Maity, and S. L. Sharma, “Effects of gamma irradiations on structural and electrical properties of indium oxide thin films prepared by thermal evaporation,” Mater. Lett., vol. 164, pp. 372–375, 2016. https://doi.org/10.1016/j.matlet.2015.11.003.Suche in Google Scholar

[12] R. Gupta, R. P. Chauhan, and R. Kumar, “Influence of gamma radiation on the optical, morphological, structural and electrical properties of electrodeposited lead selenide nanowires,” Opt. Mater., vol. 99, p. 109538, 2020. https://doi.org/10.1016/j.optmat.2019.109538.Suche in Google Scholar

[13] A. M. Hassanien, A. A. Atta, M. M. El-Nahass, et al.., “Effect of annealing temperature on structural and optical properties of gallium oxide thin films deposited by RF-sputtering,” Opt. Quant. Electron., vol. 52, 2020, Art. no. 194. https://doi.org/10.1007/s11082-020-02306-8.Suche in Google Scholar

[14] M. Di Giulio, G. Micocci, R. Rella, P. Siciliano, and A. Tepore, “Optical absorption of tellurium suboxide thin film,” Phys. Status Solidi A, vol. 136, pp. K101–K104, 1993. https://doi.org/10.1002/pssa.2211360236.Suche in Google Scholar

[15] A. Alhuthali, M. M. El-Nahass, A. A. Atta, M. M. AbdEl-Raheem, K. M. Elsabawy, and A. M. Hassanien, “Study of topological morphology and optical properties of SnO2 thin films deposited by RF sputtering technique,” J. Lumin., vol. 158, pp. 165–171, 2015. https://doi.org/10.1016/j.jlumin.2014.09.044.Suche in Google Scholar

[16] M. M. El-Nahass, A. A. Atta, M. M. Abd El-Raheem, and A. M. Hassanien, “Structural and optical properties of DC Sputtered Cd2SnO4 nanocrystalline films,” J. Alloys Compd., vol. 585, pp. 1–6, 2014. https://doi.org/10.1016/j.jallcom.2013.09.079.Suche in Google Scholar

[17] T. Degen, M. Sadki, E. Bron, U. König, and G. Nénert, “The HighScore suite,” Powder Diffr., vol. 29, pp. S13–S18, 2014. https://doi.org/10.1017/s0885715614000840.Suche in Google Scholar

[18] D. H. O. Machado, J. H. D. da Silva, A. Tabata, and L. V. A. Scalvi, “Influence of thermal annealing on the properties of evaporated Er-doped SnO2,” Mater. Res. Bull., vol. 120, p. 110585, 2019. https://doi.org/10.1016/j.materresbull.2019.110585.Suche in Google Scholar

[19] A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard, “Structural studies of Rutile-Type metal dioxides,” Acta Crystallogr. Sect. B Struct. Sci., vol. 53, pp. 373–380, 1997. https://doi.org/10.1107/S0108768197001468.Suche in Google Scholar

[20] T. J. B. Holland and S. A. T. Redfern, “Unit cell refinement from powder diffraction data: the use of regression diagnostics,” Mineral. Mag., vol. 61, pp. 65–77, 1997. https://doi.org/10.1180/minmag.1997.061.404.07.Suche in Google Scholar

[21] A. L. Patterson, “The scherrer formula for X-ray particle size determination,” Phys. Rev., vol. 56, p. 978, 1939. https://doi.org/10.1103/physrev.56.978.Suche in Google Scholar

[22] K. M. Abhirami, R. Sathyamoorthy, and K. Asokan, “Structural, optical and electrical properties of gamma irradiated SnO thin films,” Radiat. Phys. Chem., vol. 91, pp. 35–39, 2013. https://doi.org/10.1016/j.radphyschem.2013.05.030.Suche in Google Scholar

[23] L. Escobar-Alarcón, A. Arrieta, E. Camps, S. Muhl, S. Rodil, and E. Vigueras-Santiago, “An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films,” Appl. Surf. Sci., vol. 254, pp. 412–415, 2007.10.1016/j.apsusc.2007.07.052Suche in Google Scholar

[24] D. Souri and Z. E. Tahan, “A new method for the determination of optical band gap and the nature of optical transitions in semiconductors,” Appl. Phys. B, vol. 119, pp. 273–279, 2015. https://doi.org/10.1007/s00340-015-6053-9.Suche in Google Scholar

[25] A. A. Ali, Y. S. Rammah, R. El-Mallawany, and D. Souri, “FTIR and UV spectra of pentaternary borate glasses,” Measurement, vol. 105, pp. 72–77, 2017. https://doi.org/10.1016/j.measurement.2017.04.010.Suche in Google Scholar

[26] Y. S. Rammah, F. I. El-Agawany, K. A. Mahmoud, R. El-Mallawany, E. Ilik, and G. Kilic, “FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses,” J. Mater. Sci. Mater. Electron., vol. 31, pp. 9099–9113, 2020. https://doi.org/10.1007/s10854-020-03440-5.Suche in Google Scholar

[27] M. M. El-Nahass, A. M. Hassanien, A. Ahmed, et al.., “Gamma irradiation effects on structural and optical properties of amorphous and crystalline Nb2O5 thin films,” Opt. Quant. Electron., vol. 50, pp. 313–327, 2018. https://doi.org/10.1007/s11082-018-1580-3.Suche in Google Scholar

[28] S. H. Wemple and M. DiDomenico Jr, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B, vol. 3, pp. 1338–1350, 1971. https://doi.org/10.1103/physrevb.3.1338.Suche in Google Scholar

[29] S. H. Wemple, “Refractive-index behavior of amorphous semiconductors and glasses,” Phys. Rev. B, vol. 7, pp. 3767–3777, 1973. https://doi.org/10.1103/physrevb.7.3767.Suche in Google Scholar

[30] D. Edward Palik, Handbook of Optical Constants of Solids, New York, Academic Press, 1985, p. 265.Suche in Google Scholar

[31] R. J. Bell, M. A. Ordal, and R. W. Alexander Jr., “Equations linking different sets of optical properties for nonmagnetic materials,” Appl. Opt., vol. 24, pp. 3680–3682, 1985. https://doi.org/10.1364/ao.24.003680.Suche in Google Scholar PubMed

[32] R. C. Miller, “Optical second harmonic generation in piezoelectric crystals,” Appl. Phys. Lett., vol. 5, pp. 17–19, 1964. https://doi.org/10.1063/1.1754022.Suche in Google Scholar

[33] C. C. Wang, “Empirical relation between the linear and the third-order nonlinear optical susceptibilities,” Phys. Rev. B, vol. 2, pp. 2045–2048, 1970. https://doi.org/10.1103/physrevb.2.2045.Suche in Google Scholar

[34] L. Tichý, H. Tichá, P. Nagels, R. Callaerts, R. Mertens, and M. Vlček, “Optical properties of amorphous As–Se and Ge–As–Se thin films,” Mater. Lett., vol. 39, pp. 122–128, 1999. https://doi.org/10.1016/s0167-577x(98)00227-4.Suche in Google Scholar

[35] R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B, vol. 21, p. 640, 2004. https://doi.org/10.1364/josab.21.000640.Suche in Google Scholar

[36] A. B. Khatibani and S. M. Rozati, “Optical and morphological investigation of aluminium and nickel oxide composite films deposited by spray pyrolysis method as a basis of solar thermal absorber,” Bull. Mater. Sci., vol. 38, pp. 319–326, 2015. https://doi.org/10.1007/s12034-015-0880-5.Suche in Google Scholar

[37] M. M. Rahman, H. A. Miran, Z.-T. Jiang, et al.., “Investigation of the post-annealing electromagnetic response of Cu-Co oxide coatings via optical measurement and computational modelling,” RSC Adv., vol. 7, pp. 16826–16835, 2017. https://doi.org/10.1039/c6ra25626k.Suche in Google Scholar

Received: 2021-07-30
Accepted: 2021-09-19
Published Online: 2021-10-04
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0215/html
Button zum nach oben scrollen