Home Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure
Article
Licensed
Unlicensed Requires Authentication

Mixed initial-boundary value problems describing motions of Maxwell fluids with linear dependence of viscosity on the pressure

  • Constantin Fetecau ORCID logo , Dumitru Vieru ORCID logo EMAIL logo , Abdul Rauf ORCID logo and Tahir Mushtaq Qureshi
Published/Copyright: October 13, 2021

Abstract

Some mixed initial-boundary value problems are analytically studied. They correspond to unsteady motions of the incompressible upper-convected Maxwell (IUCM) fluids with linear dependence of viscosity on the pressure between infinite horizontal parallel plates. The fluid motion is generated by the upper plate that applies time-dependent shear stresses to the fluid. Exact solutions are established for the dimensionless velocity and nontrivial shear stress fields using a suitable change of the spatial variable and the Laplace transform technique. They are presented as sum of the steady-state and transient components and are used to determine the required time to reach the permanent state. Comparisons between exact and numerical solutions indicate an excellent agreement. Analytical solutions for the unsteady motion of the same fluids induced by an exponential shear stress on the boundary are obtained as limiting cases of the general solutions. Moreover, the steady-state solutions corresponding to the ordinary IUCM fluids performing the initial motions are provided by means of asymptotic approximations of standard Bessel functions. Finally, spatial variation of starting solutions and the influence of physical parameters on the fluid motion are graphically underlined and discussed.


Corresponding author: Dumitru Vieru, Department of Theoretical Mechanics, Technical University of Iasi, Iasi 700050, Romania, E-mail:

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous reviewers for the careful assessment, fruitful remarks, valuable suggestions and kind appreciations regarding the initial version of the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Appendix

(A1) J 0 ( z ) = J 0 ( z ) , J 1 ( z ) = J 1 ( z ) , Y 0 ( z ) = Y 0 ( z ) + 2 i J 0 ( z ) , Y 1 ( z ) = Y 1 ( z ) 2 i J 1 ( z ) ,

(A2) d d s J 1 [ ξ ( s ) ] Y 0 [ ξ ( s ) β + 1 ] Y 1 [ ξ ( s ) ] J 0 [ ξ ( s ) β + 1 ] = 2 s W e + 1 π s ( s W e + 1 ) J 1 2 [ ξ ( s ) ] J 0 2 [ ξ ( s ) β + 1 ] J 1 [ ξ ( s ) ] J 0 [ ξ ( s ) β + 1 ] ,

(A3) R e z u ̄ c ( y , s ) e s t s = s 1 n + R e z u ̄ c ( y , s ) e s t s = s 2 n = β π q n 2 s 1 n ( s 2 n 2 + ω 2 ) ( 2 s 2 n W e + 1 ) e s 1 n t + s 2 n ( s 1 n 2 + ω 2 ) × ( 2 s 1 n W e + 1 ) e s 2 n t ( s 1 n 2 + ω 2 ) s 2 n 2 + ω 2 × ( 2 s 1 n W e + 1 ) ( 2 s 2 n W e + 1 ) × J 0 ( q n β + 1 ) J 1 ( q n ) J 0 2 ( q n β + 1 ) J 1 2 ( q n ) B 0 ( β ( 1 y ) + 1 , q n ) ,

where s 1n and s 2n are roots of the algebraic equation 4 W e s 2 + 4 s β q n 2 = 0 .

(A4) ( s 1 n 2 + ω 2 ) ( s 2 n 2 + ω 2 ) = ( β 2 q n 2 4 W e ω 2 ) 2 + 16 ω 2 16 W e 2 ,

(A5) ( 2 s 1 n W e + 1 ) ( 2 s 2 n W e + 1 ) = 4 a n 2 W e 2 = W e β 2 q n 2 1 ,

(A6) s 1 n ( s 2 n 2 + ω 2 ) ( 2 s 2 n W e + 1 ) = ( β 2 q n 2 4 W e ω 2 ) ( 1 W e β 2 q n 2 ) 8 W e 2 + ( β 2 q n 2 + 4 W e ω 2 ) 1 W e β 2 q n 2 8 W e 2 ,

(A7) s 2 n ( s 1 n 2 + ω 2 ) ( 2 s 1 n W e + 1 ) = ( β 2 q n 2 4 W e ω 2 ) ( 1 W e β 2 q n 2 ) 8 W e 2 ( β 2 q n 2 + 4 W e ω 2 ) 1 W e β 2 q n 2 8 W e 2 ,

(A8) J 0 ( z ) 1 , J 1 ( z ) z 2 , Y 0 ( z ) 2 π ln z 2 + α , Y 1 ( z ) 2 π z f o r z 1 ,

where α = 0.5772 is the Euler–Mascheroni constant.

(A9) ( s 1 n 2 + ω 2 ) ( 2 s 1 n W e + 1 ) = β 2 q n 2 + 4 W e ω 2 + 4 s 1 n 2 s 1 n W e ( β 2 q n 2 4 W e ω 2 ) 4 W e ,

(A10) ( s 2 n 2 + ω 2 ) ( 2 s 2 n W e + 1 ) = β 2 q n 2 + 4 W e ω 2 + 4 s 2 n 2 s 2 n W e ( β 2 q n 2 4 W e ω 2 ) 4 W e ,

(A11) lim s 1 / W e Y 0 [ ξ ( s ) β + 1 ] J 1 [ ξ ( s ) β ( 1 y ) + 1 ] J 0 [ ξ ( s ) β + 1 ] Y 1 [ ξ ( s ) β ( 1 y ) + 1 ] J 1 [ ξ ( s ) ] Y 0 [ ξ ( s ) β + 1 ] Y 1 [ ξ ( s ) ] J 0 [ ξ ( s ) β + 1 ] = 1 β ( 1 y ) + 1 ,

(A12) s 1 n 2 ( s 2 n 2 + ω 2 ) ( 2 s 2 n W e + 1 ) = 8 ω 2 ( 1 W e β 2 q n 2 1 ) β 2 q n 2 ( β 2 q n 2 4 W e ω 2 ) 16 W e 2 × 1 W e β 2 q n 2 ,

(A13) s 2 n 2 ( s 1 n 2 + ω 2 ) ( 2 s 1 n W e + 1 ) = 8 ω 2 ( 1 W e β 2 q n 2 + 1 ) + β 2 q n 2 ( β 2 q n 2 4 W e ω 2 ) 16 W e 2 × 1 W e β 2 q n 2 ,

(A14) s 1 n ( s 2 n 2 + ω 2 ) ( 2 s 2 n W e + 1 ) = β 2 q n 2 + 4 W e ω 2 + ( β 2 q n 2 4 W e ω 2 ) 1 W e β 2 q n 2 8 W e 2 × 1 W e β 2 q n 2 ,

(A15) s 2 n ( s 1 n 2 + ω 2 ) ( 2 s 1 n W e + 1 ) = ( β 2 q n 2 + 4 W e ω 2 ) + ( β 2 q n 2 4 W e ω 2 ) 1 W e β 2 q n 2 8 W e 2 × 1 W e β 2 q n 2 ,

(A16) J ν ( z ) 2 π z cos z ( 2 ν + 1 ) π 4 , Y ν ( z ) 2 π z sin z ( 2 ν + 1 ) π 4 f o r z 1 .

In order to prove the equality (A2), for instance, we used the next known results

J 0 ( z ) = J 1 ( z ) , Y 0 ( z ) = Y 1 ( z ) , J 1 ( z ) = 1 z J 0 ( z ) J 1 ( z ) , Y 1 ( z ) = 1 z Y 0 ( z ) Y 1 ( z ) , J ν ( z ) Y ν + 1 ( z ) J ν + 1 ( z ) Y ν ( z ) = 2 π z

and the fact that

J 1 [ ξ ( s ) ] Y 0 [ ξ ( s ) β + 1 ] Y 1 [ ξ ( s ) ] J 0 [ ξ ( s ) β + 1 ] = 0 .

References

[1] G. G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids,” Trans. Camb. Philos. Soc., vol. 8, pp. 287–305, 1845.10.1017/CBO9780511702242.005Search in Google Scholar

[2] P. W. Bridgman, The Physics of High Pressure, New York, MacMillan Company, 1931.Search in Google Scholar

[3] W. G. Cutler, R. H. McMicke, W. Webb, and R. W. Scheissler, “Study of the compressions of several high molecular weight hydrocarbons,” J. Chem. Phys., vol. 29, pp. 727–740, 1958. https://doi.org/10.1063/1.1744583.Search in Google Scholar

[4] K. L. Johnson and R. Cameron, “Shear behavior of elastohydrodynamic oil films at high rolling contact pressures,” Proc. Inst. Mech. Eng., vol. 182, no. 1, pp. 307–319, 1967. https://doi.org/10.1243/pime_proc_1967_182_029_02.Search in Google Scholar

[5] K. L. Johnson and J. L. Tevaarwerk, “Shear behavior of elastohydrodynamic oil films,” Proc. Roy. Soc. Lond. Ser. A, vol. 356, pp. 215–236, 1977. https://doi.org/10.1098/rspa.1977.0129.Search in Google Scholar

[6] S. Bair and W. O. Winer, “The high pressure high shear stress rheology of liquid lubricants,” J. Tribol., vol. 114, pp. 1–13, 1992. https://doi.org/10.1115/1.2920862.Search in Google Scholar

[7] S. Bair, J. Jarzynski, and W. O. Winer, “The temperature, pressure and time dependence of lubricant viscosity,” Tribol. Int., vol. 34, no. 7, pp. 461–468, 2001. https://doi.org/10.1016/s0301-679x(01)00042-1.Search in Google Scholar

[8] S. Bair and P. Kottke, “Pressure–viscosity relationships for elastohydrodynamics,” Tribol. Trans., vol. 46, no. 3, pp. 289–295, 2003. https://doi.org/10.1080/10402000308982628.Search in Google Scholar

[9] V. Prusa, S. Srinivasan, and K. R. Rajagopal, “Role of pressure dependent viscosity in measurements with falling cylinder viscometer,” Int. J. Non Lin. Mech., vol. 47, pp. 743–750, 2012.10.1016/j.ijnonlinmec.2012.02.001Search in Google Scholar

[10] M. Renardy, “Parallel shear flows of fluids with a pressure-dependent viscosity,” J. Nonnewton. Fluid Mech., vol. 114, pp. 229–236, 2003. https://doi.org/10.1016/s0377-0257(03)00154-x.Search in Google Scholar

[11] M. M. Denn, Polymer Melt Processing: Foundations in Fluid Mechanics and Heat Transfer, New York, USA, Cambridge University Press, 2008.10.1017/CBO9780511813177Search in Google Scholar

[12] K. R. Rajagopal, G. Saccomandi, and L. Vergori, “Flow of fluids with pressure and shear-dependent viscosity down an inclined plane,” J. Fluid Mech., vol. 706, pp. 173–189, 2012. https://doi.org/10.1017/jfm.2012.244.Search in Google Scholar

[13] A. Z. Szeri, Fluid Film Lubrication, Cambridge, Cambridge University Press, 1998.10.1017/CBO9780511626401Search in Google Scholar

[14] H. H. Cui, Z. Silber-Li, and S. N. Zhu, “Flow characteristics of liquids in microtubes driven by a high pressure,” Phys. Fluids, vol. 16, pp. 1803–1810, 2004. https://doi.org/10.1063/1.1691457.Search in Google Scholar

[15] C. Barus, “Note on the dependence of viscosity on pressure and temperature,” Proc. Am. Acad. Arts Sci., vol. 27, pp. 13–18, 1891. https://doi.org/10.2307/20020462.Search in Google Scholar

[16] C. Barus, “Isothermals, isopiestics and isometrics relative to viscosity,” Am. J. Sci., vol. 45, no. 266, pp. 87–96, 1893. https://doi.org/10.2475/ajs.s3-45.266.87.Search in Google Scholar

[17] S. Kara, V. Prusa, and K. R. Rajagopal, “On Maxwell fluid with relaxation time and viscosity depending on the pressure,” Int. J. Non Lin. Mech., vol. 46, no. 6, pp. 819–827, 2011.10.1016/j.ijnonlinmec.2011.02.013Search in Google Scholar

[18] V. Prusa and K. R. Rajagopal, “A note on the modeling of incompressible fluids with material moduli dependent on the mean normal stress,” Int. J. Non Lin. Mech., vol. 52, pp. 41–45, 2013.10.1016/j.ijnonlinmec.2013.01.003Search in Google Scholar

[19] L. Fusi, “Unidirectional flows of a Herschel–Bulkley fluid with pressure-dependent rheological moduli,” Eur. Phys. J. Plus, vol. 135, 2020, Art no. 544. https://doi.org/10.1140/epjp/s13360-020-00555-w.Search in Google Scholar

[20] J. Hron, J. Malek, and K. R. Rajagopal, “Simple flows of fluids with pressure-dependent viscosities,” Proc. Roy. Soc. Lond. A, vol. 457, pp. 1603–1622, 2001. https://doi.org/10.1098/rspa.2000.0723.Search in Google Scholar

[21] D. Dowson and G. R. Higginson, Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication, Oxford, Pergamon Press, 1966.Search in Google Scholar

[22] P. Björnbom, “Thermodynamic equilibrium of a fluid column under the influence of gravity,” Z. Naturforsch. A, vol. 76, no. 7, pp. 633–652, 2021. https://doi.org/10.1515/zna-2021-0066.Search in Google Scholar

[23] K. R. Rajagopal, “Couette flows of fluids with pressure dependent viscosity,” Int. J. Appl. Mech. Eng., vol. 9, no. 3, pp. 573–585, 2004.Search in Google Scholar

[24] K. R. Rajagopal, “A semi-inverse problem of flows of fluids with pressure dependent viscosities,” Inverse Probl. Sci. Eng., vol. 16, pp. 269–280, 2008. https://doi.org/10.1080/17415970701529205.Search in Google Scholar

[25] V. Prusa, “Revisiting Stokes first and second problems for fluids with pressure-dependent viscosities,” Int. J. Eng. Sci., vol. 48, pp. 2054–2065, 2010.10.1016/j.ijengsci.2010.04.009Search in Google Scholar

[26] F. T. Akyildiz and D. Siginer, “A note on the steady flow of Newtonian fluids with pressure dependent viscosity in rectangular duct,” Int. J. Eng. Sci., vol. 104, pp. 1–4, 2016. https://doi.org/10.1016/j.ijengsci.2016.04.004.Search in Google Scholar

[27] K. D. Housiadas and G. C. Georgiou, “Analytical solution of the flow of a Newtonian fluid with pressure-dependent viscosity in a rectangular duct,” Appl. Math. Comput., vol. 322, pp. 123–128, 2018. https://doi.org/10.1016/j.amc.2017.11.029.Search in Google Scholar

[28] C. Fetecau, A. Rauf, T. M. Qureshi, and M. Khan, “Permanent solutions for some oscillatory motions of fluids with power-law dependence of viscosity on the pressure and shear stress on the boundary,” Z. Naturforsch. A, vol. 75, no. 9, pp. 757–769, 2020. https://doi.org/10.1515/zna-2020-0135.Search in Google Scholar

[29] G. A. Danish, M. Imran, C. Fetecau, and D. Vieru, “First exact solutions for mixed boundary value problems concerning the motions of fluids with exponential dependence of viscosity on pressure,” AIP Adv., vol. 10, p. 065206, 2020. https://doi.org/10.1063/1.5145369.Search in Google Scholar

[30] E. Marusic-Paloka and I. Pazanin, “A note on the pipe flow with a pressure-dependent viscosity,” J. Nonnewton. Fluid Mech., vol. 197, pp. 5–10, 2013.10.1016/j.jnnfm.2013.02.006Search in Google Scholar

[31] I. Pazanin, “Asymptotic analysis of the curved-pipe flow with a pressure-dependent viscosity satisfying Barus law,” Math. Probl. Eng., vol. 2015, 2015, Art no. 905406.10.1155/2015/905406Search in Google Scholar

[32] E. Marusic-Paloka and I. Pazanin, “Asymptotic analysis of the fluid flow with a pressure-dependent viscosity in a system of thin pipes,” Comput. Appl. Math., vol. 3, no. 1, pp. 297–305, 2018.10.1007/s40314-016-0345-5Search in Google Scholar

[33] J. R. Lin, L. M. Chu, C. R. Hung, and R. F. Lu, “Squeeze film problems of long partial journal bearings for non-Newtonian couple stress fluids with pressure-dependent viscosity,” Z. Naturforsch. A, vol. 66a, nos 8–9, pp. 512–518, 2011. https://doi.org/10.5560/zna.2011-0009.Search in Google Scholar

[34] K. R. Rajagopal, G. Saccomandi, and L. Vergori, “Unsteady flows of fluids with pressure dependent viscosity,” J. Math. Anal. Appl., vol. 404, no. 2, pp. 362–372, 2013. https://doi.org/10.1016/j.jmaa.2013.03.025.Search in Google Scholar

[35] C. Fetecau and C. Bridges, “Analytical solutions for some unsteady flows of fluids with linear dependence of viscosity on the pressure,” Inverse Probl. Sci. Eng., vol. 29, no. 3, pp. 378–395, 2020. https://doi.org/10.1080/17415977.2020.1791109.Search in Google Scholar

[36] D. Vieru, C. Fetecau, and C. Bridges, “Analytical solutions for a general mixed boundary value problem associated to motions of fluids with linear dependence of viscosity on the pressure,” Int. J. Appl. Mech. Eng., vol. 25, pp. 181–197, 2020. https://doi.org/10.2478/ijame-2020-0042.Search in Google Scholar

[37] K. D. Housiadas, “An exact analytical solution for viscoelastic fluids with pressure-dependent viscosity,” J. Nonnewton. Fluid Mech., vol. 223, pp. 147–156, 2015. https://doi.org/10.1016/j.jnnfm.2015.06.004.Search in Google Scholar

[38] C. Fetecau, D. Vieru, T. Abbas, and R. Ellahi, “Analytical solutions of upper convected Maxwell fluid with exponential difference of viscosity under the influence of pressure,” Mathematics, vol. 9, p. 334, 2021. https://doi.org/10.3390/math9040334.Search in Google Scholar

[39] M. Renardy, “Inflow boundary condition for steady flow of viscoelastic fluids with differential constitutive laws,” Rocky Mt. J. Math., vol. 18, no. 2, pp. 445–453, 1988. https://doi.org/10.1216/rmj-1988-18-2-445.Search in Google Scholar

[40] C. Fetecau, M. Imran, and C. Fetecau, “Taylor–Couette flow of an Oldroyd-B fluid in an annulus due to a time-dependent couple,” Z. Naturforsch. A, vol. 66a, pp. 40–46, 2011. https://doi.org/10.1515/zna-2011-1-207.Search in Google Scholar

[41] E. S. Baranovskii, “Mixed initial-boundary value problem for equations of motion of Kelvin–Voigt fluids,” Comput. Math. Math. Phys., vol. 56, pp. 1363–1371, 2016. https://doi.org/10.1134/s0965542516070058.Search in Google Scholar

[42] A. A. Domnich, E. S. Baranovskii, and M. A. Artemov, “A nonlinear model of the non-isothermal slip flow between two parallel plates,” J. Phys. Conf. Ser., vol. 1479, p. 012005, 2020. https://doi.org/10.1088/1742-6596/1479/1/012005.Search in Google Scholar

[43] R. J. Poole, “The Deborah and Weissenberg numbers,” Rheol. Bull., vol. 53, pp. 32–39, 2012.Search in Google Scholar

[44] L. A. Fullard and G. C. Wake, “An analytical series solution to the steady laminar flow of a Newtonian fluid in a partially filled pipe, including the velocity distribution and the dip phenomenon,” J. Appl. Math., vol. 80, no. 6, pp. 1890–1901, 2015. https://doi.org/10.1093/imamat/hxv025.Search in Google Scholar

Received: 2021-07-29
Revised: 2021-09-12
Accepted: 2021-09-15
Published Online: 2021-10-13
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0212/html
Scroll to top button