Startseite Nonlinear excitations and dynamic features of dust ion-acoustic waves in a magnetized electron–positron–ion plasma
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Nonlinear excitations and dynamic features of dust ion-acoustic waves in a magnetized electron–positron–ion plasma

  • Rabindranath Maity und Biswajit Sahu ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. September 2021

Abstract

A wide class of nonlinear excitations and the dynamics of wave groups of finite amplitude ion-acoustic waves are investigated in multicomponent magnetized plasma system comprising warm ions, and superthermal electrons as well as positrons in presence of negatively charged impurities or dust particles. Employing the reductive perturbation technique (RPT), the Korteweg–de-Vries (KdV) equation, and extended KdV equation are derived. The presence of excess superthermal electrons as well as positrons and other plasma parameters are shown to influence the characteristics of both compressive and rarefactive solitons as well as double layers (DLs). Also, we extend our investigation by deriving the nonlinear Schrödinger equation from the extended KdV equation employing a suitable transformation to study the wave group dynamics for long waves. The analytical and numerical simulation results demonstrate that nonlinear wave predicts solitons, “table-top” solitons, DLs, bipolar structure, rogue waves, and breather structures. Moreover, implementing the concept of dynamical systems, phase portraits of nonlinear periodic, homoclinic trajectories, and supernonlinear periodic trajectories are presented through numerical simulation.


Corresponding author: Biswajit Sahu, Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126, India, E-mail:

Acknowledgments

The authors are grateful to anonymous reviewers for their valuable comments which lead to the improvement of the quality of the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, San Francisco, Freeman, 1973, p. 763.Suche in Google Scholar

[2] F. C. Michel, “Theory of pulsar magnetospheres,” Rev. Mod. Phys., vol. 54, p. 1, 1982. https://doi.org/10.1103/revmodphys.54.1.Suche in Google Scholar

[3] M. J. Rees, “Very early universe,” in The Very Early Universe, G. W. Gibbons, S. W. Hawking, and S. Siklas, Eds., Cambridge, Cambridge University Press, 1983.Suche in Google Scholar

[4] F. C. Miller and P. J. Wiita, Active Galactic Nuclei, Berlin, Springer, 1987, p. 202.10.1007/3-540-19492-4Suche in Google Scholar

[5] E. P. Liang, S. C. Wilks, and M. Tabak, “Pair production by ultraintense lasers,” Phys. Rev. Lett., vol. 81, p. 4887, 1998. https://doi.org/10.1103/physrevlett.81.4887.Suche in Google Scholar

[6] X. Wang, P. Muggli, T. Katsouleas, et al.., “Optimization of positron trapping and acceleration in an electron-beam-driven plasma wakefield accelerator,” Phys. Rev. Accel. Beams, vol. 12, p. 051303, 2009. https://doi.org/10.1103/physrevstab.12.051303.Suche in Google Scholar

[7] A. A. Gusev, U. B. Jayanthi, I. M. Martin, G. I. Pugacheva, and W. N. Spjeldvik, “Nuclear reactions in the uppermost Earth atmosphere as a source of the magnetospheric positron radiation belt,” J. Geophys. Res., vol. 106, p. 26111, 2001. https://doi.org/10.1029/1999ja000443.Suche in Google Scholar

[8] P. Debu, “GBAR: Gravitational behavior of antihydrogen at rest,” Hyperfine Interact., vol. 212, p. 51, 2011. https://doi.org/10.1007/s10751-011-0379-4.Suche in Google Scholar

[9] R. Bharuthram, “Arbitrary amplitude double layers in a multi-species electron-positron plasma,” Astrophys. Space Sci., vol. 189, p. 213, 1992. https://doi.org/10.1007/bf00643126.Suche in Google Scholar

[10] M. Ferdousi, S. Sultana, and A. A. Mamun, “Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma,” Phys. Plasmas, vol. 22, p. 032117, 2015. https://doi.org/10.1063/1.4916038.Suche in Google Scholar

[11] M. M. Haider, “Soliton and shock profiles in electron-positron-ion degenerate plasmas for both nonrelativistic and ultra-relativistic limits,” Z. Naturforsch., vol. 71, p. 1131, 2016. https://doi.org/10.1515/zna-2016-0280.Suche in Google Scholar

[12] N. S. Saini and K. Singh, “Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma,” Phys. Plasmas, vol. 23, p. 103701, 2016. https://doi.org/10.1063/1.4963774.Suche in Google Scholar

[13] I. B. Zel’dovich and I. D. Novikov, “Relativistic Astrophysics, 2,” in The Structure and Evolution of the Universe, vol. 2, Chicago, University of Chicago Press, 1971.Suche in Google Scholar

[14] T. Tajima and K. Shibata, Plasma Astrophysics, New York, Addison-Wesley, 1997.Suche in Google Scholar

[15] P. K. Shukla and M. Marklund, “Dust acoustic wave in a strongly magnetized pair-dust plasma,” Phys. Scripta, vol. T113, p. 36, 2004. https://doi.org/10.1238/physica.topical.113a00036.Suche in Google Scholar

[16] W. H. Zurek, “Annihilation radiation from the galactic center - positrons in dust?” APJ (Acta Pathol. Jpn.), vol. 289, p. 603, 1985. https://doi.org/10.1086/162921.Suche in Google Scholar

[17] J. C. Higdon, R. E. Lingenfelter, and R. E. Rothschild, “The galactic positron annihilation radiation and the propagation of positrons in the interstellar medium,” APJ (Acta Pathol. Jpn.), vol. 698, p. 350, 2009. https://doi.org/10.1088/0004-637x/698/1/350.Suche in Google Scholar

[18] A. Evans, The Dusty Universe, New York, John Wiley & Sons, 1994.Suche in Google Scholar

[19] J. Miller and D. A. Williams, Dust and Chemistry in Astronomy, Bristol, Institute of Physics, 1993.Suche in Google Scholar

[20] M. Horányi, T. W. Hartquist, O. Havnes, D. A. Mendis, and G. E. Morfill, “Dusty plasma effects in Saturn’s magnetosphere,” Rev. Geophys., vol. 42, no. 4, p. RG4002, 2004.10.1029/2004RG000151Suche in Google Scholar

[21] R. L. Merlino, “Dusty plasmas and applications in space and industry,” Plasma Phys. Appl., vol. 81, p. 73, 2006.Suche in Google Scholar

[22] F. Verheest, Waves in Dusty Space Plasmas, Dordrecht, Kluwer Academic, 2000.10.1007/978-94-010-9945-5Suche in Google Scholar

[23] S. Ghosh and R. Bharuthram, “Ion acoustic solitons and double layers in electron-positron-ion plasmas with dust particulates,” Astrophys. Space Sci., vol. 314, p. 121, 2008. https://doi.org/10.1007/s10509-008-9748-0.Suche in Google Scholar

[24] S. A. El-Tantawy, N. A. El-Bedwehy, and W. M. Moslem, “Nonlinear ion-acoustic structures in dusty plasma with superthermal electrons and positrons,” Phys. Plasmas, vol. 18, p. 052113, 2011. https://doi.org/10.1063/1.3592255.Suche in Google Scholar

[25] A. Paul and A. Bandyopadhyay, “Dust ion acoustic solitary structures in presence of nonthermal electrons and isothermal positrons,” Astrophys. Space Sci., vol. 361, p. 172, 2016. https://doi.org/10.1007/s10509-016-2758-4.Suche in Google Scholar

[26] V. M. Vasyliunas, “A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3,” J. Geophys. Res., vol. 73, p. 2839, 1968. https://doi.org/10.1029/ja073i009p02839.Suche in Google Scholar

[27] S. P. Christon, D. G. Mitchell, D. J. Williams, L. A. Frank, C. Y. Huang, and T. E. Eastman, “Energy spectra of plasma sheet ions and electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions,” J. Geophys. Res., vol. 93, p. 2562, 1988. https://doi.org/10.1029/ja093ia04p02562.Suche in Google Scholar

[28] M. Maksimovic, V. Pierrard, and P. Riley, “Ulysses electron distributions fitted with Kappa functions,” Geophys. Res. Lett., vol. 24, p. 1151, 1997. https://doi.org/10.1029/97gl00992.Suche in Google Scholar

[29] T. S. Gill, C. Bedi, and A. S. Bains, “Envelope excitations of ion acoustic solitary waves in a plasma with superthermal electrons and positrons,” Phys. Scripta, vol. 81, p. 055503, 2010. https://doi.org/10.1088/0031-8949/81/05/055503.Suche in Google Scholar

[30] P. Chatterjee, R. Ali, and A. Saha, “Analytical solitary wave solution of the dust ion acoustic waves for the damped forced Korteweg-de Vries equation in superthermal plasmas,” Z. Naturforsch., vol. 73, p. 151, 2018. https://doi.org/10.1515/zna-2017-0358.Suche in Google Scholar

[31] M. Mehdipoor, “Dissipative ion-acoustic waves in collisional electron-positron-ion plasmas with Kappa distribution,” Contrib. Plasma Phys., vol. 59, p. e201900006, 2019. https://doi.org/10.1002/ctpp.201900006.Suche in Google Scholar

[32] R. Ali and P. Chatterjee, “Three-soliton interaction and soliton turbulence in superthermal dusty plasmas,” Z. Naturforsch., vol. 74, p. 757, 2019. https://doi.org/10.1515/zna-2018-0452.Suche in Google Scholar

[33] M. Berthomier, R. Pottelette, and M. Malingre, “Solitary waves and weak double layers in a two-electron temperature auroral plasma,” J. Geophys. Res., vol. 103, no. A3, p. 4261, 1998. https://doi.org/10.1029/97ja00338.Suche in Google Scholar

[34] C. Cattell, J. Crumley, J. Dombeck, et al.., “Polar observations of solitary waves at high and low altitudes and comparison to theory,” Adv. Space Res., vol. 28, p. 1631, 2001. https://doi.org/10.1016/s0273-1177(01)00478-1.Suche in Google Scholar

[35] J. D. Williams, L.-J. Chen, W. S. Kurth, D. A. Gurnett, and M. K. Dougherty, “Electrostatic solitary structures observed at Saturn,” Geophys. Res. Lett., vol. 33, p. L06103, 2006. https://doi.org/10.1029/2005gl024532.Suche in Google Scholar

[36] C. Norgren, M. André, A. Vaivads, and Y. V. Khotyaintsev, “Slow electron phase space holes: magnetotail observations,” Geophys. Res. Lett., vol. 42, p. 1654, 2015. https://doi.org/10.1002/2015gl063218.Suche in Google Scholar

[37] A. Kakad, B. Kakad, C. Anekallu, G. Lakhina, Y. Omura, and A. Fazakerley, “Slow electrostatic solitary waves in Earth’s plasma sheet boundary layer,” J. Geophys. Res.: Space Phys., vol. 121, p. 4452, 2016. https://doi.org/10.1002/2016ja022365.Suche in Google Scholar

[38] H. Alfvén, “On the theory of magnetic storms and aurorae,” Tellus, vol. 10, p. 104, 1958. https://doi.org/10.3402/tellusa.v10i1.9213.Suche in Google Scholar

[39] R. E. Ergun, L. Andersson, D. Main, et al.., “Parallel electric fields in the upward current region of the aurora: numerical solutions,” Phys. Plasmas, vol. 9, p. 3695, 2002. https://doi.org/10.1063/1.1499121.Suche in Google Scholar

[40] M. K. Mishra, R. S. Tiwari, and S. K. Jain, “Small amplitude ion-acoustic double layers in multicomponent plasma with positrons,” Phys. Rev. E, vol. 76, p. 03640, 2007. https://doi.org/10.1103/physreve.76.036401.Suche in Google Scholar

[41] N. Boubakour, M. Tribeche, and K. Aoutou, “Ion acoustic solitary waves in a plasma with superthermal electrons and positrons,” Phys. Scripta, vol. 79, p. 065503, 2009. https://doi.org/10.1088/0031-8949/79/06/065503.Suche in Google Scholar

[42] S. Ali Shan and N. Imtiaz, “Double layers and solitary structures in electron-positron-ion plasma with Kappa distributed trapped electrons,” Phys. Plasmas, vol. 24, p. 102109, 2017. https://doi.org/10.1063/1.4986990.Suche in Google Scholar

[43] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and A. Slunyaev, “Generation of large-amplitude solitons in the extended Korteweg-de Vries equation,” Chaos, vol. 12, p. 1070, 2002. https://doi.org/10.1063/1.1521391.Suche in Google Scholar PubMed

[44] R. Grimshaw, A. Slunyaev, and E. Pelinovsky, “Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity,” Chaos, vol. 20, p. 013102, 2010. https://doi.org/10.1063/1.3279480.Suche in Google Scholar PubMed

[45] M. S. Ruderman, T. Talipova, and E. Pelinovsky, “Dynamics of modulationally unstable ion-acoustic wavepackets in plasmas with negative ions,” J. Plasma Phys., vol. 74, p. 639, 2008. https://doi.org/10.1017/s0022377808007150.Suche in Google Scholar

[46] S. Ghosh, “Nonlinear ion acoustic wave and group dynamics near critical density in a plasma with negative ion,” J. Phys. Soc. Jpn., vol. 88, p. 074501, 2019. https://doi.org/10.7566/jpsj.88.074501.Suche in Google Scholar

[47] W. M. Moslem, R. Sabry, S. K. El-Labany, and P. K. Shukla, “Dust-acoustic rogue waves in a nonextensive plasma,” Phys. Rev. E, vol. 84, p. 066402, 2011. https://doi.org/10.1103/physreve.84.066402.Suche in Google Scholar

[48] H. Bailung, S. K. Sharma, and Y. Nakamura, “Observation of peregrine solitons in a multicomponent plasma with negative ions,” Phys. Rev. Lett., vol. 107, p. 255005, 2011. https://doi.org/10.1103/physrevlett.107.255005.Suche in Google Scholar

[49] S. A. El-Tantawy, N. A. El-Bedwehy, and S. K. El-Labany, “Ion-acoustic super rogue waves in ultracold neutral plasmas with nonthermal electrons,” Phys. Plasmas, vol. 20, p. 072102, 2013. https://doi.org/10.1063/1.4812630.Suche in Google Scholar

[50] T. K. Baluku, M. A. Hellberg, and F. Verheest, “New light on ion acoustic solitary waves in a plasma with two-temperature electrons,” EPL, vol. 91, p. 15001, 2010. https://doi.org/10.1209/0295-5075/91/15001.Suche in Google Scholar

[51] A. E. Dubinov and D. Y. Kolotkov, “Ion-acoustic super solitary waves in dusty multispecies plasmas,” IEEE Trans. Plasma Sci., vol. 40, p. 1429, 2012. https://doi.org/10.1109/tps.2012.2189026.Suche in Google Scholar

[52] A. E. Dubinov, D. Y. Kolotkov, and M. A. Sazonkin, “Supernonlinear waves in plasma,” Plasma Phys. Rep., vol. 38, p. 833, 2012. https://doi.org/10.1134/s1063780x12090036.Suche in Google Scholar

[53] D. P. Chapagai, J. Tamang, and A. Saha, “Bifurcation analysis for small-amplitude nonlinear and supernonlinear ion-acoustic waves in a superthermal plasma,” Z. Naturforsch., vol. 75, p. 183, 2020. https://doi.org/10.1515/zna-2019-0210.Suche in Google Scholar

[54] A. E. Dubinov and D. Y. Kolotkov, “Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas,” Rev. Mod. Plasma Phys., vol. 2, p. 2, 2018. https://doi.org/10.1007/s41614-018-0014-9.Suche in Google Scholar

[55] S. Sultana, I. Kourakis, N. S. Saini, and M. A. Hellberg, “Oblique electrostatic excitations in a magnetized plasma in the presence of excess superthermal electrons,” Phys. Plasmas, vol. 17, p. 032310, 2010. https://doi.org/10.1063/1.3322895.Suche in Google Scholar

[56] H. Alinejad, “Effect of nonthermal electrons on oblique electrostatic excitations in a magnetized electron-positron-ion plasma,” Phys. Plasmas, vol. 19, p. 052302, 2012. https://doi.org/10.1063/1.4714609.Suche in Google Scholar

[57] M. Sharifi and A. Parvazian, “Electrostatic waves in a magnetized plasma with nonextensive distribution,” Phys. Stat. Mech. Appl., vol. 393, p. 489, 2014. https://doi.org/10.1016/j.physa.2013.09.024.Suche in Google Scholar

[58] M. Sarker, M. R. Hossen, M. G. Shah, B. Hosen, and A. A. Mamun, “Oblique propagation of electrostatic waves in a magnetized electron-positron-ion plasma in the presence of heavy particles,” Z. Naturforsch., vol. 73, p. 501, 2018. https://doi.org/10.1515/zna-2017-0419.Suche in Google Scholar

[59] R. Z. Sagdeev, in Reviews of Plasma Physics, M. A. Leontovich, Ed., New York, Consultants Bureau, 1966, p. 23.Suche in Google Scholar

[60] M. Saito, S. Watanabe, and H. Tanaca, “Modulational instability of ion wave in plasma with negative ion,” J. Phys. Soc. Jpn., vol. 53, p. 2304, 1984. https://doi.org/10.1143/jpsj.53.2304.Suche in Google Scholar

[61] R. Grimshaw, D. Pelinovsky, E. Pelinovsky, and T. Talipova, “Wave group dynamics in weakly nonlinear long-wave models,” Phys. Nonlinear Phenom., vol. 159, p. 35, 2001. https://doi.org/10.1016/s0167-2789(01)00333-5.Suche in Google Scholar

[62] T. Taniuti and N. Yajima, “Perturbation method for a nonlinear wave modulation. I,” J. Math. Phys., vol. 10, p. 1369, 1969. https://doi.org/10.1063/1.1664975.Suche in Google Scholar

[63] W.-P. Zhong, M. R. Belic, and T. Huang, “Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients,” Phys. Rev. E, vol. 87, p. 065201, 2013. https://doi.org/10.1103/physreve.87.065201.Suche in Google Scholar

[64] D. H. Peregrine, “Water waves, nonlinear Schrödinger equations and their solutions,” J. Aust. Math. Soc. Series B, Appl. Math., vol. 25, p. 16, 1983. https://doi.org/10.1017/s0334270000003891.Suche in Google Scholar

[65] N. Akhmediev, A. Ankiewicz, and M. Taki, “Waves that appear from nowhere and disappear without a trace,” Phys. Lett., vol. 373, p. 675, 2009. https://doi.org/10.1016/j.physleta.2008.12.036.Suche in Google Scholar

Received: 2021-06-14
Accepted: 2021-08-26
Published Online: 2021-09-15
Published in Print: 2021-12-20

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2021-0167/pdf
Button zum nach oben scrollen