Abstract
Many Laves phases AM2 takes up hydrogen to form interstitial hydrides in which hydrogen atoms partially occupy A2M2, AM3, and/or M4 tetrahedral interstices. They often exhibit temperature-driven order-disorder phase transitions, which are triggered by repulsion of hydrogen atoms occupying neighboring tetrahedral interstices. Because of the phase widths with respect to hydrogen a complete ordering, i.e., full occupation of all hydrogen positions is usually not achieved. Order-disorder transitions in Laves phase hydrides are thus phase transitions between crystal structures with different degrees of hydrogen order. Comparing the crystal structures of ordered and disordered phases reveals close symmetry relationships in all known cases. This allows new insights into the crystal chemical description of such phases and into the nature of the phase transitions. Structural relationships for over 40 hydrides of cubic and hexagonal Laves phases ZrV2, HfV2, ZrCr2, ZrCo2, LaMg2, CeMg2, PrMg2, NdMg2, SmMg2, YMn2, ErMn2, TmMn2, LuMn2, Lu0.4Y0.6Mn2 YFe2, and ErFe2 are concisely described in terms of crystallographic group-subgroup schemes (Bärnighausen trees) covering 32 different crystal structure types, 26 of which represent hydrogen-ordered crystal structures.
Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.
Acknowledgements
My sincere thanks goes to Prof. Dr. Hartmut Bärnighausen, Prof. Dr. H. P. Beck and Prof. Dr. U. Müller for many fruitful discussions on crystallographic group-subgroup relationships and to Hannah Kohlmann for language polishing.
Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
1. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 1. Aufl.; Vieweg+Teubner Verlag: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar
2. Wondratschek, H., Müller, U. Eds., International Tables for Crystallography. Vol. A1: Symmetry Relations Between Space Groups; Springer: United States, 2004.Suche in Google Scholar
3. Müller, U. Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Suche in Google Scholar
4. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH 1980, 9, 139–175.Suche in Google Scholar
5. Hoffmann, R.-D., Pöttgen, R. AlB2-related intermetallic comounds - a comprehensive view based on group-subgroup relationships. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Suche in Google Scholar
6. Pöttgen, R. Coloring, distortions, and puckering in selected intermetallic structures from the perspective of group-subgroup relations. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Suche in Google Scholar
7. Kohlmann, H. Structural relationships in complex hydrides of the late transition metals. Z. Kristallogr. 2009, 224, 454–460; https://doi.org/10.1524/zkri.2009.1179.Suche in Google Scholar
8. Laves, F., Wallbaum, H. J. Über den Einfluß geometrischer Faktoren auf die stöchiometrische Formel metallischer Verbindungen, gezeigt an der Kristallstruktur des KNa2. Z. Anorg. Allg. Chem. 1942, 250, 110–120; https://doi.org/10.1002/zaac.19422500110.Suche in Google Scholar
9. Laves, F. Factors governing crystal structure. In Intermetallic Compounds; Westbrook, J. H., Ed. John Wiley & Sons: New York, 1967; pp. 129–143.Suche in Google Scholar
10. Nesper, R. Chemische Bindungen – intermetallische Verbindungen. Angew. Chem. 1991, 103, 805–834; https://doi.org/10.1002/ange.19911030709.Suche in Google Scholar
11. Stein, F., Palm, M., Sauthoff, G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Suche in Google Scholar
12. Ormeci, A., Simon, A., Grin, Yu. Topologie der Kristallstruktur und chemische Bindung in Laves-Phasen. Angew. Chem. 2010, 122, 9182–9186; https://doi.org/10.1002/ange.201001534.Suche in Google Scholar
13. Shaltiel, D., Jacob, I., Davidov, D. Hydrogen absorption and desorption properties of AB2 Laves-Phase pseudobinary compounds. J. Less-Common Met. 1977, 53, 117–131; https://doi.org/10.1016/0022-5088(77)90162-X.Suche in Google Scholar
14. Shaltiel, D. Hydride properties of AB2 Laves Phase compounds. J. Less-Common Met. 1978, 62, 407–416; https://doi.org/10.1016/0022-5088(78)90055-3.Suche in Google Scholar
15. Shoemaker, D. P., Shoemaker, C. B. Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves Phases. J. Less-Common Met. 1979, 68, 43–58; https://doi.org/10.1016/0022-5088(79)90271-6.Suche in Google Scholar
16. Ivey, D. G., Northwood, D. O. Storing Hydrogen in AB2 Laves-type compounds. Z. Phys. Chem. 1986, 147, 191–209; https://doi.org/10.1524/zpch.1986.147.1_2.191.Suche in Google Scholar
17. Miedema, A. R., Buschow, K. H. J., Van Mal, H. H. Which intermetallic compounds of transition metals form stable hydrides?. J. Less-Common Met. 1976, 49, 463–472; https://doi.org/10.1016/0022-5088(76)90057-6.Suche in Google Scholar
18. Westlake, D. G. Hydrogen Sites in A2BHy. J. Solid State Chem. 1984, 53, 130–135; https://doi.org/10.1016/0022-4596(84)90235-4.Suche in Google Scholar
19. Semenenko, K. N., Burnasheva, V. V. Physicochemistry and crystallochemistry of intermetallic hydrides containing rare earths and transition metals. J. Less-Common Met. 1985, 105, 1–11; https://doi.org/10.1016/0022-5088(85)90121-3.Suche in Google Scholar
20. Michalowicz, O., Gupta, M., Michel, N. Hydrogen-induced modifications of the electronic structure of intermetallic compounds. J. Alloys Compd. 2002, 330–332, 328–331; https://doi.org/10.1016/S0925-8388(01)01584-5.Suche in Google Scholar
21. Smithson, H., Marianetti, C. A., Morgan, D., Van der Ven, A., Predite, A., Ceder, G. First-principle study of the stability and electronic structure of metal hydrides. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 144107; https://doi.org/10.1103/PhysRevB.66.144107.Suche in Google Scholar
22. Matar, S. F. Intermetallic hydrides: a review with ab initio aspects. Prog. Solid State Chem. 2010, 38, 1–37; https://doi.org/10.1016/j.progsolidstchem.2010.08.003.Suche in Google Scholar
23. Yvon, K., Fischer, P. Crystal and magnetic structures of ternary metal hydrides: a comprehensive review. In Hydrogen in Intermetallic Compounds I, Electronic, Thermodynamic and Crystallographic Properties, Preparation; L. Schlapbach, Ed. Springer: Berlin, 1988, pp. 87–138.10.1007/3540183337_11Suche in Google Scholar
24. Bououdina, M., Menier, P., Soubeyroux, J. L., Fruchart, D. Study of the system Zr1-xTix(Cr0.5M0.4V0.1)2 – H2 (0 ≤ x ≤ 0.2, M = Fe, Co, Ni). J. Alloys Compd. 1997, 253–254, 302–307; https://doi.org/10.1016/S0925-8388(96)02901-5.Suche in Google Scholar
25. Sun, K., Guo, X., Liu, Y., Wang, H. Neutron diffraction study of the deuterides of Zr0.9Ti0.1MnCr Laves phase alloy. Phys. B Condens. Matter 2006, 385–386, 137–140; https://doi.org/10.1016/j.physb.2006.05.302.Suche in Google Scholar
26. Moriwaki, Y., Gamo, T., Seri, H., Iwaki, T. Electrode characteristics of C15-type Laves phases. J. Less-Common Met. 1991, 172–174, 1211–1218; https://doi.org/10.1016/S0022-5088(06)80029-9.Suche in Google Scholar
27. Hong, K. The development of hydrogen storage alloys and the progress of nickel hydride batteries. J. Alloys Compd. 2001, 321, 307–313; https://doi.org/10.1016/S0925-8388(01)00957-4.Suche in Google Scholar
28. Somenkov, V. A., Irodova, A. V. Lattice structure and phase transition of hydrogen in metallic compounds. J. Less-Common Met. 1984, 101, 481–492. https://doi.org/10.1016/0022-5088(84)90124-3.Suche in Google Scholar
29. Miron, N. F., Shcherbak, V. I., Bykov, V. N., Levdik, V. A. Structural study of the quasibinary Zr0.35Ti0.65-H(D) system. Sov. Phys. Crystallogr. 1971, 16, 266–269.Suche in Google Scholar
30. Didisheim, J.-J., Yvon, K., Shaltiel, D., Fischer, P., Bujard, P., Walker, E. The distribution of the deuterium atoms in the deuterated cubic Laves-Phase ZrV2D4.5. Solid State Commun. 1979, 32, 1087–1090; https://doi.org/10.1016/0038-1098(79)90836-6.Suche in Google Scholar
31. Irodova, A. V., Glazkov, V. P., Somenko, V. A., Shil’stein, S. Sh. Investigation of a phase transition in HfV2D4. Sov. Phys. Solid State 1980, 22, 45–50.Suche in Google Scholar
32. Irodova, A. V., Lavrova, O. A., Laskova, G. V., Padurets, L. N. Phase transition in cubic deuteride ZrCr2D4. Sov. Phys. Solid State 1982, 24, 22–27.Suche in Google Scholar
33. Kohlmann, H., Fauth, F., Yvon, K. Hydrogen order in monoclinic ZrCr2H3.8. J. Alloys Compd. 1999, 285, 204–211; https://doi.org/10.1016/S0925-8388(99)00027-4.Suche in Google Scholar
34. Aoki, K., Yamamoto, T., Masumoto, T. Hydrogen induced amorphization in RNi2 Laves Phases. Scr. Metall. 1987, 21, 27–31; https://doi.org/10.1016/0036-9748(87)90401-7.Suche in Google Scholar
35. Aoki, K., Masumoto, T. Hydrogen-induced amorphization of intermetallics. J. Alloys Compd. 1995, 231, 20–28; https://doi.org/10.1016/0925-8388(95)01832-8.Suche in Google Scholar
36. Kohlmann, H. Metal hydrides. In Encyclopedia of Physical Sciences and Technology, 3rd ed.; Meyers, R. A., Ed. Academic Press: Cambridge, MA, 2002; pp. 441–458.10.1016/B0-12-227410-5/00426-9Suche in Google Scholar
37. Fischer, P., Fauth, F., Böttger, G., Skripov, A. V., Kozhanov, V. N. Neutron diffraction study of the location of deuterium in the deuterium-stabilized HfTi2D4 phase. J. Alloys Compd. 1999, 282, 184–186; https://doi.org/10.1016/S0925-8388(98)00832-9.Suche in Google Scholar
38. Hempelmann, R., Skripov, A. Hydrogen motion in metals. In Hydrogen Transfer Reactions; Hynes, J. T., Klinman, J. P., Limbach, H. H., Schowen, R. L., Eds. Wiley VCH: Weinheim, 2007; pp. 787–829.10.1002/9783527611546.ch26Suche in Google Scholar
39. Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C., Weller, M. T. Structural isotope effects in metal hydrides and deuterides. Phys. Chem. Chem. Phys. 2010, 12, 2083–2088; https://doi.org/10.1039/B914135A.Suche in Google Scholar
40. Weller, M. T., Henry, P. F., Ting, V. P., Wilson, C. C. Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chem. Commun. 2009, 2973–2989; https://doi.org/10.1039/B821336D.Suche in Google Scholar
41. Baur, W. H., Kassner, D. The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr. 1992, B48, 356–369; https://doi.org/10.1107/s0108768191014726.Suche in Google Scholar
42. Kohlmann, H., Yvon, K. Revision of the low-temperature structures of rhombohedral ZrCr2Dx (x ∼ 3.8), and monoclinic ZrV2Dx (1.1 < x < 2.3) and HfV2Dx (x ∼ 1.9). J. Alloys Compd. 2000, 309, 123–126; https://doi.org/10.1016/S0925-8388(00)01040-9.Suche in Google Scholar
43. Skripov, A. V., Karkin, A. E., Mirmelstein, A. V. Hydrogen-induced anomalies in the heat capacity of C15-type ZrCr2Hx (ZrCr2Dx). J. Phys.: Condens. Matter 1997, 9, 1191–1200; https://doi.org/10.1088/0953-8984/9/6/006.Suche in Google Scholar
44. Fernández, J. F., Kemali, M., Ross, D. K., Sánchez, C. An empirical potential for interstistial hydrogen in some C-15 Laves phase compounds from IINS measurements. J. Phys.: Condens. Matter 1999, 11, 10353–10373; https://doi.org/10.1088/0953-8984/11/50/327.Suche in Google Scholar
45. Skripov, A. V., Natter, H., Hempelmann, R. Neutron spectroscopic evidence of a low-temperature phase transition in C15-type ZrCr2Hx (x = 0.2 and 0.45). Solid State Commun. 2001, 120, 265–268; https://doi.org/10.1016/S0038-1098(01)00392-1.Suche in Google Scholar
46. Skripov, A. V., Hempelmann, R. Effects of hydrogen ordering on the vibrational spectra of H(D) in HfV2H4-yDy. Solid State Commun. 2006, 140, 435–438; https://doi.org/10.1016/j.ssc.2006.09.017.Suche in Google Scholar
47. Irodova, A. V., André, G., Bourée, F. Hydrogen redistribution in the solid solutions ZrV2Dx, 2.2 ≤ x ≤ 2.7. II. Structure of the intermediate phase: ‘Lattice liquid crystal’. A neutron-diffraction study. J. Alloys Compd. 2003, 350, 196–204; https://doi.org/10.1016/S0925-8388(02)01000-9.Suche in Google Scholar
48. Bogdanova, A. N., Irodova, A. V., André, G., Bourée, F. Novel superstructure in the high-concentrated hydrogen solid solutions ZrV2Dx>4. J. Alloys Compd. 2005, 396, 25–28; https://doi.org/10.1016/j.jallcom.2004.12.013.Suche in Google Scholar
49. Bogdanova, A. N., Irodova, A. V., André, G., Bourée, F. The ZrV2D6 crystal structure. J. Alloys Compd. 2003, 356–357, 50–53; https://doi.org/10.1016/S0925-8388(02)01214-8.Suche in Google Scholar
50. Landau, L. D., Lifshitz, E. M. Statistical Physics; Pergamon Press: London, 1958.Suche in Google Scholar
51. Irodova, A. V., Suard, E. Evolution of hydrogen superstructure with k = (½, ½, ½) in ZrV2D2+δ, -0.8< δ <0.2. J. Alloys Compd. 1999, 291, 184–189; https://doi.org/10.1016/S0925-8388(99)00275-3.Suche in Google Scholar
52. Irodova, A. V., Borisov, I. I. Neutron-diffraction investigations of the order-disorder phase transition in ZrV2D3, k = (001). Phys. Solid State Engl. Transl. 1994, 36, 960–963.Suche in Google Scholar
53. Kohlmann, H, Fauth, F., Fischer, P., Skripov, A. V., Yvon, K. Low-temperature deuterium ordering in the cubic Laves phase derivative α-ZrCr2D0.66. J. Alloys Compd. 2001, 327, L4–L9; https://doi.org/10.1016/S0925-8388(01)01565-1.Suche in Google Scholar
54. Černý, R., Joubert, J.-M., Kohlmann, H., Yvon, K. Mg6Ir2H11, a new metal hydride containing saddle-like [IrH4]5− and square-pyramidal [IrH5]4− hydrido complexes. J. Alloys Compd. 2002, 340, 180–188; https://doi.org/10.1016/S0925-8388(02)00050-6.Suche in Google Scholar
55. Zolliker, P., Yvon, K., Jorgensen, J. D., Rotella, F. J. Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg. Chem. 1986, 25, 3590–3593. https://doi.org/10.1021/ic00240a012.Suche in Google Scholar
56. Bronger, W., Müller, P., Schmitz, D., Spittank, H. Synthese und Struktur von Na2PtH4, einem ternären Hydrid mit quadratisch planaren PtH42--Baugruppen. Z. Anorg. Allg. Chem. 1984, 516, 35–41; https://doi.org/10.1002/zaac.19845160906.Suche in Google Scholar
57. Gingl, F., Yvon, K., Vogt, T., Hewat, A. Synthesis and crystal structure of tetragonal LnMg2H7 (Ln = La, Ce), two Laves phase hydride derivatives having ordered hydrogen distribution. J. Alloys Compd. 1997, 253–254, 313–317; https://doi.org/10.1016/S0925-8388(96)02992-1.Suche in Google Scholar
58. Werwein, A., Maaß, F., Dorsch, L. Y., Janka, O., Pöttgen, R., Hansen, T. C., Kimpton, J., Kohlmann, H. Hydrogenation Properties of Laves Phases LnMg2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb). Inorg. Chem. 2017, 56, 15006–15014; https://doi.org/10.1021/acs.inorgchem.7b02319.Suche in Google Scholar PubMed
59. Kohlmann, H., Werner, F., Yvon, K., Hilscher, G., Reissner, M., Cuello, G. J. Neutron powder diffraction with natSm: crystal structures and magnetism of a binary samarium deuteride and a ternary samarium magnesium deuteride. Chem.–Eur. J. 2007, 13, 4178–4186; https://doi.org/10.1002/chem.200601116.Suche in Google Scholar
60. Yvon, K., Kohlmann, H., Bertheville, B. Europium-hydrogen bond distances in saline metal hydrides by neutron diffraction. Chimia 2001, 55, 505–509.10.2533/chimia.2001.505Suche in Google Scholar
61. Kohlmann, H. Solid-state structures and properties of europium and samarium hydrides. Eur. J. Inorg. Chem. 2010, 2582–2593; https://doi.org/10.1002/ejic.201000107.Suche in Google Scholar
62. Paul-Boncour, V., Filipek, S. M., Marchuk, I., André, G., Bourée, F., Wiesinger, G., Percheron-Guégan, A. Structural and magnetic properties of ErFe2D5 studied by neutron diffraction and Mössbauer spectroscopy. J. Phys.: Condens. Matter 2003, 15, 4349–4359.10.1088/0953-8984/15/25/306Suche in Google Scholar
63. Wiesinger, G., Paul-Boncour, V., Filipek, S. M., Reichl, C., Marchuk, I., Percheron-Guégan, A. Structural and magnetic properties of RFe2Dx (R = Zr, Y and x ≥ 3.5) studied by means of neutron diffraction and 57Mössbauer spectroscopy. J. Phys.: Condens. Matter 2005, 17, 893–908; https://doi.org/10.1088/0953-8984/17/6/009.Suche in Google Scholar
64. Paul-Boncour, V., Guillot, M., Isnard, O., Ouladdiaf, B., Hoser, A., Hansen, T., Stuesser, N. Interplay between crystal and magnetic structures in YFe2(DαD1-α)4.2 compounds studied by neutron diffraction. J. Solid State Chem. 2017, 245, 98–109; https://doi.org/10.1016/j.jssc.2016.09.002.Suche in Google Scholar
65. Latroche, M., Paul-Boncour, V., Percheron-Guégan, A., Bourée-Vigneron, F. Crystallographic study of YFe2D3,5 by X-ray and neutron powder diffraction. J. Solid State Chem. 1997, 133, 568–571; https://doi.org/10.1006/jssc.1997.7514.Suche in Google Scholar
66. Goncharenko, I. N., Mirebeau, I., Irodova, A. V., Suard, E. Interplay of magnetic and hydrogen order in the laves hydride YMn2H4.3. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 2580–2584; https://doi.org/10.1103/physrevb.56.2580.Suche in Google Scholar
67. Sherstobitova, E. A., Gubkin, A., Stashkova, L. A., Mushnikov, N. V., Terent’ev, P. B., Cheptiakov, D., Teplykh, A. E., Park, J., Pirogov, A. N. Crystal structure of ErFe2D3.1 and ErFe2H3.1 at 450K J. Alloys Compd. 2010, 508, 348–353; https://doi.org/10.1016/j.jallcom.2010.04.043.Suche in Google Scholar
68. Paul-Boncour, V., Bourée-Vigneron, F., Filipek, S. M., Marchuk, I., Jacob, I., Percheron-Guégan, A. Neutron diffraction study of ZrM2Dx deuterides (M = Fe, Co). J. Alloys Compd. 2003, 356–357, 69-72; https://doi.org/10.1016/S0925-8388(03)00102-6.Suche in Google Scholar
69. Latroche, M., Paul-Boncour, V., Percheron-Guégan, A., Bourée-Vigneron, F., André, G. Structural and magnetic properties of low D content YMn2 deuteride. J. Solid State Chem. 2000, 154, 398–404; https://doi.org/10.1006/jssc.2000.8801.Suche in Google Scholar
70. Paul-Boncour, V., Guénée, L., Latroche, M., Percheron-Guégan, A., Ouladdiaf, B., Bourée-Vigneron, F. Elaboration, structures, and phase transitions for YFe2Dx compounds (x = 1.3, 1.75, 1.9, 2.6) studied by neutron diffraction. J. Solid State Chem. 1999, 142, 120–129; https://doi.org/10.1006/jssc.1998.7995.Suche in Google Scholar
71. Seidel, S., Pöttgen, R. Group-subgroup schemes for MoNi4, Nb4N5, KxFe2-ySe2, Bd10Au3As8O10 and CsInCl3: i5 superstructures of I4/m allowing atom, charge or vacancy ordering. Z. Kristallogr. 2020, 235, 29–39; https://doi.org/10.1515/zkri-2019-0069.Suche in Google Scholar
72. Irodova, A. V., Suard, E. Order-disorder transition in the deuterated hexagonal (C14-type) Laves phase ZrCr2D3.8. J. Alloys Compd. 2000, 299, 32–28; https://doi.org/10.1016/S0925-8388(99)00685-4.Suche in Google Scholar
73. Makarova, O. L., Goncharenko, I. N., Irodova, A. V., Mirebeau, I., Suard, E. Interplay of magnetic and hydrogen ordering in the hexagonal Laves hydrides. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 676, 104423.10.1103/PhysRevB.66.104423Suche in Google Scholar
74. Budziak, A., Żurek, M., Żukrowski, J., Balanda, M., Pacyna, A., Czapla, M. Influence of hydrogen on structural and magnetic properties of the hexagonal Laves phase HoMn2. J. Magn. Magn. Mater 2012, 324, 735–741; https://doi.org/10.1016/j.jmmm.2011.09.007.Suche in Google Scholar
75. Budziak, A., Rusinek, D. Determination of magnetic structure of hexagonal and cubic HoMn2D2.0 deuterides, proposal PHY-01-2976. In BER II Experimental Reports 2012; Rödig, A., Pearce, P., Brandt, A., Eds.; Berichte des Helmholtz-Zentrums Berlin, 47, 2013; pp. 51–52.Suche in Google Scholar
76. Hahn, T., Ed. International Tables for Crystallography, 5th ed. Springer: Berlin, 2002.Suche in Google Scholar
77. Didisheim, J.-J., Yvon, K., Fische, P., Shaltiel, D. The deuterium site occupation in ZrV2Dx as a function of the deuterium concentration. J. Less-Common Met. 1980, 73, 355–362; https://doi.org/10.1016/0022-5088(80)90329-X.Suche in Google Scholar
78. Perminov, V. P. Structural characterstics and crystal chemistry of binary magnides. Powder Metall. Met. Ceram. 1967, 6, 409–416; https://doi.org/10.1007/BF00775401.Suche in Google Scholar
79. Saccone, A., Delfino, S., Borzone, G., Ferro, R. The samarium-magnesium system: a phase diagram. J. Less-Common Met. 1989, 154, 47–60; https://doi.org/10.1016/0022-5088(89)90169-0.Suche in Google Scholar
80. Przewoznik, J., Paul-Boncour, V., Latroche, M., Percheron-Guégan, A. X-ray diffraction and extended X-ray absorption fine-structure study of RMn2 hydrides (R = Y, Gd or Dy), J. Alloys Compd. 1996, 232, 107–118. https://doi.org/10.1016/0925-8388(95)01995-2.Suche in Google Scholar
81. Paul-Boncour, V., Private Communication, 2000.Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide