Home Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Article
Licensed
Unlicensed Requires Authentication

Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide

  • Constantin Hoch EMAIL logo
Published/Copyright: August 28, 2020

Abstract

The solvate complexes that can be obtained by either dissolving metal iodides in N,N-dimethylformamide (DMF) or by synthesising them in DMF have the general composition [M(DMF)x]Iy. DMF shows to behave as simple monodentate ligand with low sterical impact, so that x in the composition follows the radius of My+. We present here the crystal structures of the alkaline earth and lanthanoid metal iodide complexes [Mg(DMF)6]I2, [Ca(DMF)6]I2, [Sr(DMF)7]I2, [Ba(DMF)8]I2, [La(DMF)9]I3, [Ln(DMF)8]I3 (isotypic series for Ln = Nd, Sm, Eu, Dy, Gd, Er, Yb and Lu) and for the tris-triiodide complex salt [Sc(DMF)6](I3)3. Their different crystal structure types can be compared on the basis of the packing topologies of the nearly spherical cationic entities which show simple sphere packing motifs.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Constantin Hoch, LMU München, Butenandtstraße 5-13 (D), 81341 München, Germany, E-mail:

Acknowledgement

The results compiled in this work are a summary of synthetic contributions of a number of persons dealing over the years with the electrocrystallisation process of polar intermetallics. I would like to express my gratefulness to Dr. P. Bielec, R. Calaminus, A. Haffner, T. Hohl, S. Lindner, M. Mader, F. Pultar, P. Ratza, Dr. J. Sappl, T. Sinn, Dr. F. Tambornino and V. Weippert for their valuable contributions. Furthermore, I thank Prof. A. Simon, Prof. Th. Schleid and Prof. W. Schnick for their longstanding support.

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author thanks Deutsche Forschungsgesellschaft (DFG) for funding.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Bünzli, J. C. G., Piguet, C. Chem. Soc. Rev. 2005, 34, 1048–1077; https://doi.org/10.1039/B406082M..Search in Google Scholar PubMed

2. Hemmila, I., Laitala, V. J. Fluoresc. 2005, 15, 529–542; https://doi.org/10.1007/s10895-005-2826-6..Search in Google Scholar PubMed

3. Caravan, P. Acc. Chem. Res. 2009, 42, 851–862; https://doi.org/10.1021/ar800220p..Search in Google Scholar PubMed

4. Otting, G. J. Biomol. NMR 2008, 42, 1–9; https://doi.org/10.1007/s10858-008-9256-0..Search in Google Scholar PubMed

5. New, E. J. Parker, D., Smith, D. G., Walton, J. W. Curr. Opin. Chem. Biol. 2010, 14, 238–246; https://doi.org/10.1016/j.cbpa.2009.10.003..Search in Google Scholar PubMed

6. Shibasaki, M., Yoshikawa, N. Chem. Rev. 2002, 102, 2187–2209; https://doi.org/10.1021/cr010297z..Search in Google Scholar PubMed

7. Ishiguro, S.-I., Umebayashi, Y., Kato, K., Takahashi, R., Ozutsumi, K. J. Chem. Soc. Faraday Trans. 1998, 94, 3607–3612; https://doi.org/10.1039/A806967K..Search in Google Scholar

8. Harrowfield, J. M., Skelton, B. W., White, A. H., Wilner, F. R. Inorg. Chim. Acta 2004, 357, 2358–2364; https://doi.org/10.1016/j.ica.2004.01.008..Search in Google Scholar

9. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/S2052520616003954..Search in Google Scholar PubMed PubMed Central

10. Scott, T. A., Abbaoui, B., Zhou, H.-C. Inorg. Chem. 2004, 43, 2459–2461; https://doi.org/10.1021/ic049968c..Search in Google Scholar PubMed

11. Benz, M., Braband, H., Schmutz, P., Haltera, J., Alberto, R. Chem. Sci. 2015, 6, 165–169; https://doi.org/10.1039/C4SC02461C..Search in Google Scholar

12. Ruben, M., Walther, D., Knake, R., Görls, H., Beckert, R. Eur. J. Inorg. Chem. 2000, 2000, 1055–1064; https://doi.org/10.1002/(SICI)1099-0682(200005)2000:5<1055::AID-EJIC1055>3.0.CO;2-M..10.1002/(SICI)1099-0682(200005)2000:5<1055::AID-EJIC1055>3.0.CO;2-MSearch in Google Scholar

13. Bekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P., Viossat, B. Z. Kristallogr. NCS 2002, 217, 128–130; https://doi.org/10.1524/ncrs.2002.217.1.128..Search in Google Scholar

14. Liu, X., Cai, L.-Z., Guo, G.-C., Li, Q., Huang, J.-S. Chin. J. Struct. Chem. 2006, 25, 90–94..10.1002/cjoc.200790024Search in Google Scholar

15. Duan, T., Schnöckel, H. Z. Anorg. Allg. Chem. 2004, 630, 2622–2626; https://doi.org/10.1002/zaac.200400321..Search in Google Scholar

16. Perruchas, S., Simon, F., Uriel, S., Avarvari, N., Boubekeur, K., Batail, P. J. Organomet. Chem. 2002, 643–644, 301–306; https://doi.org/10.1016/S0022-328X(01)01387-0..Search in Google Scholar

17. Nørby, P., Vogel Jørgensen, M. R., Johnsen, S., Brummerstedt Iversen, B. Eur. J. Inorg. Chem. 2016, 2016, 1389–1394; https://doi.org/10.1002/ejic.201501418..Search in Google Scholar

18. Hamdeh, U. H., Nelson, R. D., Ryan, B. J., Bhattacharjee, U., Petrich, J. W., Panthani, M. G. Chem. Mater. 2016, 28, 6567–6574; https://doi.org/10.1021/acs.chemmater.6b02347..Search in Google Scholar

19. Danjo, H., Nakagawa, T., Katagiri, K., Kawahata, M., Yoshigai, S., Miyazawa, T., Yamaguchi, K. Cryst. Growth Des. 2015, 15, 384–389; https://doi.org/10.1021/cg5014686..Search in Google Scholar

20. Avdeeva, V. V., Polyakova, I. N., Vologzhanina, A. V., Goeva, L. V., Buzanov, G. A., Generalova, N. B., Malinina, E. A., Zhizhin, K. Y., Kuznetsov, N. T. Russ. J. Inorg. Chem. 2016, 61, 1125–1134; https://doi.org/10.1134/S0036023616090023..Search in Google Scholar

21. Mishra, S., Jeanneau, E., Iasco, O., Ledoux, G., Luneau, D., Daniele, S. Eur. J. Inorg. Chem. 2012, 2012, 2749–2758; https://doi.org/10.1002/ejic.201101363..Search in Google Scholar

22. Huang, W., Wei, H., Li, L., Qian, J., Zhang, C. J. Cluster Sci. 2016, 27, 1463–1474; https://doi.org/10.1007/s10876-016-1012-0..Search in Google Scholar

23. Mishra, S., Jeanneau, E., Daniele, E., Ledoux, G. Dalton Trans 2008, 2008, 6296–6304; https://doi.org/10.1039/B809964B..Search in Google Scholar

24. Sünkel, K., Reimann, D. Z. Naturforsch. B 2014, 68, 546–550; https://doi.org/10.5560/ZNB.2013-3077..Search in Google Scholar

25. Mishra, S., Hubert Pfalzgraf, L. G., Jeanneau, E., Chermettec, H. Dalton Trans 2007, 2007, 410–413; https://doi.org/10.1039/b616800k..Search in Google Scholar PubMed

26. Khutornoi, V. A., Naumov, N. G., Mironov Yu, V., Oeckler, O., Simon, A., Fedorov, V. E. Koord. Khim. 2002, 28, 183–190. https://doi.org/10.1023/A:1014724002211.10.1023/A:1014724002211Search in Google Scholar

27. Suzuki, R., Chiba, Y., Yamaguchi, R., Yoshioka, D., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2013, 29, 11–12; https://doi.org/10.2116/xraystruct.29.11..Search in Google Scholar

28. Eissmann, F., Böhle, T., Mertens, F. O. R. L., Weber, E. Acta Crystallogr. 2010, E66, m279; https://doi.org/10.1107/S160053681000454X..Search in Google Scholar PubMed PubMed Central

29. Filatov, A. S., Anderson, J. S. private communication (2015), CCDC Nr. 1434236.Search in Google Scholar

30. Dhifallaha, F., Belkhiriab, M. S. Acta Crystallogr. 2016, E72, 841–844; https://doi.org/10.1107/S2056989016007842..Search in Google Scholar PubMed PubMed Central

31. Thone, C., Narro, N., Jones, P. G. private communication (2010) CCDC Nr. 767277.Search in Google Scholar

32. Light, M. E., Edwards, P., Gale, P. A. private communication (2016) CCDC Nr. 1475728.Search in Google Scholar

33. Chygorin, E. N., Petrusenko, S. R., Kokozay, V. N., Smal, Y. O., Omelchenko, I. V., Shishkin, O. V. Acta Crystallogr. 2011, E67, m1563–m1564; https://doi.org/10.1107/S1600536811041523..Search in Google Scholar PubMed PubMed Central

34. Abe, K., Chiba, Y., Yoshioka, D., Yamaguchi, R., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2012, 28, 65–67; https://doi.org/10.2116/xraystruct.28.65..Search in Google Scholar

35. Ridier, K., Gillon, B., Gukasov, A., Chaboussant, G., Cousson, A., Luneau, D., Borta, A., Jacquot, J.-F., Checa, R., Chiba, Y., Sakiyama, H., Mikuriya, M. Chem. Eur J. 2016, 22, 724–735; https://doi.org/10.1002/chem.201503400..Search in Google Scholar PubMed

36. Qiutian, L., Liangren, H., Beisheng, K., Jiaxi, L. Chin. J. Struct. Chem. 1983, 4, 225. https://doi.org/10.1007/978-94-009-6923-0_41.Search in Google Scholar

37. Li, Y., Zhang, Z.-X., Li, K.-C., Xu, J.-Q., Song, W.-D., Pan, L.-Y. J. Mol. Struct. 2007, 1–3, 8–12; https://doi.org/10.1016/j.molstruc.2006.08.019..Search in Google Scholar

38. Hay, R. W., Albedyhl, S., Lightfoot, P. Trans. Met. Chem. 1998, 23, 257–260; https://doi.org/10.1023/A:1015744413792..10.1023/A:1015744413792Search in Google Scholar

39. Holt, E. M., Alcock, N. W., Sumner, R. H., Asplund, R. O. Cryst. Struct. Commun. 1979, 8, 255..Search in Google Scholar

40. Quail, J. W., Paulose, T. A. P., Foley, S. R. private communication (2009) CCDC Nr. 739507.Search in Google Scholar

41. Baumgartner, O. Z. Kristallogr. 1986, 174, 253–263; https://doi.org/10.1524/zkri.1986.174.14.253..Search in Google Scholar

42. Guo, Y., Wang, X., Li, Y., Wang, E., Xu, L., Hu, C. J. Coord. Chem. 2004, 57, 445–451; https://doi.org/10.1080/00958970410001671084..Search in Google Scholar

43. Withers, J. R., Li, D., Triplet, J., Ruschman, C., Parkin, S., Wang, G., Yee, G. T., Holmes, S. M. Polyhedron 2007, 26, 2353–2366; https://doi.org/10.1016/j.poly.2007.01.049..Search in Google Scholar

44. Avdeeva, V. V., Polyakova, I. N., Goeva, L. V., Buzanov, G. A., Malinina, E. A., Kuznetsov, N. T. Inorg. Chim. Acta 2016, 451, 129–134; https://doi.org/10.1016/j.ica.2016.07.016..Search in Google Scholar

45. Silva, R. M., Gwengo, C., Lindeman, S. V., Smith, M. D., Long, G. J., Grandjean, F., Gardinier, J. R. Inorg. Chem. 2008, 47, 7233–7242; https://doi.org/10.1021/ic8005794..Search in Google Scholar PubMed

46. Ferko, P. J., Withers, J. R., Nguyen, H., Allison, C., Ema, J., Ema, T., Rath, N. P., Zhang, Y.-Z., Holmes, S. M. Polyhedron 2017, 123, 344–352; https://doi.org/10.1016/j.poly.2016.11.047..Search in Google Scholar

47. Nitschke, C., Köckerling, M. Inorg. Chem. 2011, 50, 4313–4321; https://doi.org/10.1021/ic102278z..Search in Google Scholar PubMed

48. McKee, V., Metcalfe, T., Wikaira, J. Acta Crystallogr. 1996, C52, 1139–1141; https://doi.org/10.1107/S010827019501523X..Search in Google Scholar

49. Albinati, A., Calderazzo, F., Marchetti, F., Mason, S. A., Melai, B., Pampaloni, G., Rizzato, S. Inorg. Chem. Commun. 2007, 10, 902–905; https://doi.org/10.1016/j.inoche.2007.03.035..Search in Google Scholar

50. Ito, M., Mitsuhashi, R., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2016, 32, 21–22; https://doi.org/10.2116/xraystruct.32.21..Search in Google Scholar

51. Rojas-Dotti, C., Moliner, N., González, R., Martínez-Lillo, J. J. Coord. Chem. 2018, 71, 737–747; https://doi.org/10.1080/00958972.2017.1423477..Search in Google Scholar

52. Kaplan, P. T., Xu, L., Chen, B., McGarry, K. R., Yu, S., Wang, H., Vicic, D. A. Organometallics 2013, 32, 7552–7558; https://doi.org/10.1021/om401016k..Search in Google Scholar

53. Zhang, Z.-G., Wang, T., Niu, S.-Y., Dong, W.-T., Fan, Y.-G., Xuexiao, G. Chem. J. Chin. Univ. 1992, 13, 1582–1585. http://www.cjcu.jlu.edu.cn/EN/abstract/article_10483.shtml.Search in Google Scholar

54. Li, Y., Zhang, Z.-X., Li, K.-C., Song, W.-D., Cui, X.-B., Pan, L.-Y. J. Mol. Struct. 2007, 1–3, 102–106; https://doi.org/10.1016/j.molstruc.2006.12.039..Search in Google Scholar

55. Udalova, L. I., Adonin, S. A., Abramov, P. A., Korolkov, I. V., Sokolov, M. N. Russ. J. Coord. Chem. 2017, 43, 368–372; https://doi.org/10.1134/S1070328417050086..Search in Google Scholar

56. Che, G., Qian, T.-T., Shi, H.-T., Jia, A.-Q., Zhang, Q.-F. J. Cluster Sci. 2018, 29, 83–91; https://doi.org/10.1007/s10876-017-1308-8..Search in Google Scholar

57. Bogachev, N. A., Starova, G. L., Razzhivin, A. V., Skripkin, M. Y., Nikolskii, A. B. Russ. J. Gen. Chem. 2018, 88, 1–6; https://doi.org/10.1134/S1070363218010012..Search in Google Scholar

58. Young, A. C. M., Walters, M. A., Dewan, J. C. Acta Crystallogr. 1989, C45, 1733–1736; https://doi.org/10.1107/S0108270189003501..Search in Google Scholar

59. White, J. M., McInnis, L., Donnelly, P. S. private communication (2014) CCDC Nr. 1036000.Search in Google Scholar

60. Olmstead, M. M., Marlin, D. S., Mascharak, P. K. private communication (2015) CCDC Nr. 1053817.Search in Google Scholar

61. Ghandour, Y., Hammami, I., Najmudin, S., Bonifácio, C., Belkhiria, M. S. Acta Crystallogr. 2016, E72, 448–451; https://doi.org/10.1107/S2056989016003546..Search in Google Scholar

62. Skelton, B. W., Harrowfield, J. M. private communication (2017) CCDC Nr. 1589427.Search in Google Scholar

63. Berthet, J.-C., Thuéry, P., Ephritikhine, M. Polyhedron 2006, 25, 1700–1706; https://doi.org/10.1016/j.poly.2005.11.010..Search in Google Scholar

64. Huang, Q., Wu, X., Lu, J. Polyhedron 1997, 16, 833–838; https://doi.org/10.1016/S0277-5387(96)00328-2..Search in Google Scholar

65. Jobic, S., Poirier-Coutansais, S., Evain, M., Brec, R. Mat. Res. Bull. 2001, 36, 2637–2647; https://doi.org/10.1016/S0025-5408(01)00755-3..Search in Google Scholar

66. Mishra, S., Jeanneau, E., Ledoux, G., Daniele, S. CrystEngComm 2012, 14, 3894–3901; https://doi.org/10.1039/c2ce25120e..Search in Google Scholar

67. Wang, M., Huang, S.-W., Li, J.-B., Gong, A.-W., Wu, H.-Y., Li, H.-H., Chen, Z.-R. J. Cluster Sci. 2012, 23, 383–393; https://doi.org/10.1007/s10876-012-0440-8..Search in Google Scholar

68. Skelton, B. W., Harrowfield, J. M. private communication (2017) CCDC Nr. 1589285.Search in Google Scholar

69. Berthet, J. C., Thuéry, P., Ephritikhine, M. Inorg. Chem. 2005, 44, 1142–1146; https://doi.org/10.1021/ic048603p..Search in Google Scholar PubMed

70. Hoch, C., Simon, A. Z. Anorg. Allg. Chem. 2008, 634, 853–856; https://doi.org/10.1002/zaac.200700535..Search in Google Scholar

71. Hoch, C., Simon, A. Angew. Chem. 2012, 124, 3316–3319; https://doi.org/10.1002/anie.201108064.Search in Google Scholar

72. Tambornino, F., Hoch, C. Z. Anorg. Allg. Chem. 2015, 641, 537–542; https://doi.org/10.1002/zaac.201400561..Search in Google Scholar

73. Tambornino, F., Sappl, J., Pultar, F., Cong, T. M., Hübner, S., Giftthaler, T., Hoch, C. Inorg. Chem. 2016, 55, 11551–11559; https://doi.org/10.1021/acs.inorgchem.6b02068..Search in Google Scholar

74. Jantsch, G., Skalla, N., Jawurek, H. Z. Anorg. Allg. Chem. 1931, 201, 207–220; https://doi.org/10.1002/zaac.19312010119..Search in Google Scholar

75. Reed, J. B., Hopkins, B. S., Audrieth, L. F., Selwood, P. W., Ward, R., Dejong, J. J. Anhydrous Rare Earth Chlorides, in: Simmons Booth, H., Ed; Inorg. Synth, Vol. 1, 1939; pp. 28–33.10.1002/9780470132326.ch11Search in Google Scholar

76. Taylor, M. D. Chem. Rev. 1962, 62, 503–511; https://doi.org/10.1021/cr60220a001..Search in Google Scholar

77. Meyer, G., Ax, P. Mat. Res. Bull. 1982, 17, 1447–1455; https://doi.org/10.1016/0025-5408(82)90231-8..Search in Google Scholar

78. Jantsch, G., Jawurek, H., Skalla, N., Gawalowski, H. Z. Anorg. Allg. Chem. 1932, 207, 353–367; https://doi.org/10.1002/zaac.19322070404..Search in Google Scholar

79. Jantsch, G., Grubitsch, H., Hoffmann, F., Alber, H. Z. Anorg. Allg. Chem. 1929, 185, 49–64; https://doi.org/10.1002/zaac.19291850104..Search in Google Scholar

80. Hohmann, E., Bommer, H. Z. Anorg. Allg. Chem. 1941, 248, 383–396; https://doi.org/10.1002/zaac.19412480408..Search in Google Scholar

81. Taylor, M. D., Grant, L. R. J. Am. Chem. Soc. 1955, 77, 1507–1508; https://doi.org/10.1021/ja01611a032..Search in Google Scholar

82. Hohl, T., Sinn, T., Hoch, C. Z. Naturforsch. B 2020, 75, 509–516; https://doi.org/10.1515/znb-2020-0035..Search in Google Scholar

83. Müller, M., Buchner, M. Inorg. Chem. 2019, 58, 13276–13284; https://doi.org/10.1021/acs.inorgchem.9b02139..Search in Google Scholar PubMed

84. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/S0108767307043930..Search in Google Scholar PubMed

85. Shannon, R. D. Acta Crystallogr. 1969, B25, 925–946; https://doi.org/10.1107/S0567740869003220..Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ijcre-2019-0226).


Received: 2020-08-05
Accepted: 2020-08-06
Published Online: 2020-08-28
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0071/html
Scroll to top button