Abstract
The solvate complexes that can be obtained by either dissolving metal iodides in N,N-dimethylformamide (DMF) or by synthesising them in DMF have the general composition [M(DMF)x]Iy. DMF shows to behave as simple monodentate ligand with low sterical impact, so that x in the composition follows the radius of My+. We present here the crystal structures of the alkaline earth and lanthanoid metal iodide complexes [Mg(DMF)6]I2, [Ca(DMF)6]I2, [Sr(DMF)7]I2, [Ba(DMF)8]I2, [La(DMF)9]I3, [Ln(DMF)8]I3 (isotypic series for Ln = Nd, Sm, Eu, Dy, Gd, Er, Yb and Lu) and for the tris-triiodide complex salt [Sc(DMF)6](I3)3. Their different crystal structure types can be compared on the basis of the packing topologies of the nearly spherical cationic entities which show simple sphere packing motifs.
Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.
Acknowledgement
The results compiled in this work are a summary of synthetic contributions of a number of persons dealing over the years with the electrocrystallisation process of polar intermetallics. I would like to express my gratefulness to Dr. P. Bielec, R. Calaminus, A. Haffner, T. Hohl, S. Lindner, M. Mader, F. Pultar, P. Ratza, Dr. J. Sappl, T. Sinn, Dr. F. Tambornino and V. Weippert for their valuable contributions. Furthermore, I thank Prof. A. Simon, Prof. Th. Schleid and Prof. W. Schnick for their longstanding support.
Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The author thanks Deutsche Forschungsgesellschaft (DFG) for funding.
Conflict of interest statement: The author declares no conflicts of interest regarding this article.
References
1. Bünzli, J. C. G., Piguet, C. Chem. Soc. Rev. 2005, 34, 1048–1077; https://doi.org/10.1039/B406082M..Suche in Google Scholar PubMed
2. Hemmila, I., Laitala, V. J. Fluoresc. 2005, 15, 529–542; https://doi.org/10.1007/s10895-005-2826-6..Suche in Google Scholar PubMed
3. Caravan, P. Acc. Chem. Res. 2009, 42, 851–862; https://doi.org/10.1021/ar800220p..Suche in Google Scholar PubMed
4. Otting, G. J. Biomol. NMR 2008, 42, 1–9; https://doi.org/10.1007/s10858-008-9256-0..Suche in Google Scholar PubMed
5. New, E. J. Parker, D., Smith, D. G., Walton, J. W. Curr. Opin. Chem. Biol. 2010, 14, 238–246; https://doi.org/10.1016/j.cbpa.2009.10.003..Suche in Google Scholar PubMed
6. Shibasaki, M., Yoshikawa, N. Chem. Rev. 2002, 102, 2187–2209; https://doi.org/10.1021/cr010297z..Suche in Google Scholar PubMed
7. Ishiguro, S.-I., Umebayashi, Y., Kato, K., Takahashi, R., Ozutsumi, K. J. Chem. Soc. Faraday Trans. 1998, 94, 3607–3612; https://doi.org/10.1039/A806967K..Suche in Google Scholar
8. Harrowfield, J. M., Skelton, B. W., White, A. H., Wilner, F. R. Inorg. Chim. Acta 2004, 357, 2358–2364; https://doi.org/10.1016/j.ica.2004.01.008..Suche in Google Scholar
9. Groom, C. R., Bruno, I. J., Lightfoot, M. P., Ward, S. C. Acta Crystallogr. 2016, B72, 171–179; https://doi.org/10.1107/S2052520616003954..Suche in Google Scholar PubMed PubMed Central
10. Scott, T. A., Abbaoui, B., Zhou, H.-C. Inorg. Chem. 2004, 43, 2459–2461; https://doi.org/10.1021/ic049968c..Suche in Google Scholar PubMed
11. Benz, M., Braband, H., Schmutz, P., Haltera, J., Alberto, R. Chem. Sci. 2015, 6, 165–169; https://doi.org/10.1039/C4SC02461C..Suche in Google Scholar
12. Ruben, M., Walther, D., Knake, R., Görls, H., Beckert, R. Eur. J. Inorg. Chem. 2000, 2000, 1055–1064; https://doi.org/10.1002/(SICI)1099-0682(200005)2000:5<1055::AID-EJIC1055>3.0.CO;2-M..10.1002/(SICI)1099-0682(200005)2000:5<1055::AID-EJIC1055>3.0.CO;2-MSuche in Google Scholar
13. Bekaert, A., Barberan, O., Kaloun, E. B., Rabhi, C., Danan, A., Brion, J. D., Lemoine, P., Viossat, B. Z. Kristallogr. NCS 2002, 217, 128–130; https://doi.org/10.1524/ncrs.2002.217.1.128..Suche in Google Scholar
14. Liu, X., Cai, L.-Z., Guo, G.-C., Li, Q., Huang, J.-S. Chin. J. Struct. Chem. 2006, 25, 90–94..10.1002/cjoc.200790024Suche in Google Scholar
15. Duan, T., Schnöckel, H. Z. Anorg. Allg. Chem. 2004, 630, 2622–2626; https://doi.org/10.1002/zaac.200400321..Suche in Google Scholar
16. Perruchas, S., Simon, F., Uriel, S., Avarvari, N., Boubekeur, K., Batail, P. J. Organomet. Chem. 2002, 643–644, 301–306; https://doi.org/10.1016/S0022-328X(01)01387-0..Suche in Google Scholar
17. Nørby, P., Vogel Jørgensen, M. R., Johnsen, S., Brummerstedt Iversen, B. Eur. J. Inorg. Chem. 2016, 2016, 1389–1394; https://doi.org/10.1002/ejic.201501418..Suche in Google Scholar
18. Hamdeh, U. H., Nelson, R. D., Ryan, B. J., Bhattacharjee, U., Petrich, J. W., Panthani, M. G. Chem. Mater. 2016, 28, 6567–6574; https://doi.org/10.1021/acs.chemmater.6b02347..Suche in Google Scholar
19. Danjo, H., Nakagawa, T., Katagiri, K., Kawahata, M., Yoshigai, S., Miyazawa, T., Yamaguchi, K. Cryst. Growth Des. 2015, 15, 384–389; https://doi.org/10.1021/cg5014686..Suche in Google Scholar
20. Avdeeva, V. V., Polyakova, I. N., Vologzhanina, A. V., Goeva, L. V., Buzanov, G. A., Generalova, N. B., Malinina, E. A., Zhizhin, K. Y., Kuznetsov, N. T. Russ. J. Inorg. Chem. 2016, 61, 1125–1134; https://doi.org/10.1134/S0036023616090023..Suche in Google Scholar
21. Mishra, S., Jeanneau, E., Iasco, O., Ledoux, G., Luneau, D., Daniele, S. Eur. J. Inorg. Chem. 2012, 2012, 2749–2758; https://doi.org/10.1002/ejic.201101363..Suche in Google Scholar
22. Huang, W., Wei, H., Li, L., Qian, J., Zhang, C. J. Cluster Sci. 2016, 27, 1463–1474; https://doi.org/10.1007/s10876-016-1012-0..Suche in Google Scholar
23. Mishra, S., Jeanneau, E., Daniele, E., Ledoux, G. Dalton Trans 2008, 2008, 6296–6304; https://doi.org/10.1039/B809964B..Suche in Google Scholar
24. Sünkel, K., Reimann, D. Z. Naturforsch. B 2014, 68, 546–550; https://doi.org/10.5560/ZNB.2013-3077..Suche in Google Scholar
25. Mishra, S., Hubert Pfalzgraf, L. G., Jeanneau, E., Chermettec, H. Dalton Trans 2007, 2007, 410–413; https://doi.org/10.1039/b616800k..Suche in Google Scholar PubMed
26. Khutornoi, V. A., Naumov, N. G., Mironov Yu, V., Oeckler, O., Simon, A., Fedorov, V. E. Koord. Khim. 2002, 28, 183–190. https://doi.org/10.1023/A:1014724002211.10.1023/A:1014724002211Suche in Google Scholar
27. Suzuki, R., Chiba, Y., Yamaguchi, R., Yoshioka, D., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2013, 29, 11–12; https://doi.org/10.2116/xraystruct.29.11..Suche in Google Scholar
28. Eissmann, F., Böhle, T., Mertens, F. O. R. L., Weber, E. Acta Crystallogr. 2010, E66, m279; https://doi.org/10.1107/S160053681000454X..Suche in Google Scholar PubMed PubMed Central
29. Filatov, A. S., Anderson, J. S. private communication (2015), CCDC Nr. 1434236.Suche in Google Scholar
30. Dhifallaha, F., Belkhiriab, M. S. Acta Crystallogr. 2016, E72, 841–844; https://doi.org/10.1107/S2056989016007842..Suche in Google Scholar PubMed PubMed Central
31. Thone, C., Narro, N., Jones, P. G. private communication (2010) CCDC Nr. 767277.Suche in Google Scholar
32. Light, M. E., Edwards, P., Gale, P. A. private communication (2016) CCDC Nr. 1475728.Suche in Google Scholar
33. Chygorin, E. N., Petrusenko, S. R., Kokozay, V. N., Smal, Y. O., Omelchenko, I. V., Shishkin, O. V. Acta Crystallogr. 2011, E67, m1563–m1564; https://doi.org/10.1107/S1600536811041523..Suche in Google Scholar PubMed PubMed Central
34. Abe, K., Chiba, Y., Yoshioka, D., Yamaguchi, R., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2012, 28, 65–67; https://doi.org/10.2116/xraystruct.28.65..Suche in Google Scholar
35. Ridier, K., Gillon, B., Gukasov, A., Chaboussant, G., Cousson, A., Luneau, D., Borta, A., Jacquot, J.-F., Checa, R., Chiba, Y., Sakiyama, H., Mikuriya, M. Chem. Eur J. 2016, 22, 724–735; https://doi.org/10.1002/chem.201503400..Suche in Google Scholar PubMed
36. Qiutian, L., Liangren, H., Beisheng, K., Jiaxi, L. Chin. J. Struct. Chem. 1983, 4, 225. https://doi.org/10.1007/978-94-009-6923-0_41.Suche in Google Scholar
37. Li, Y., Zhang, Z.-X., Li, K.-C., Xu, J.-Q., Song, W.-D., Pan, L.-Y. J. Mol. Struct. 2007, 1–3, 8–12; https://doi.org/10.1016/j.molstruc.2006.08.019..Suche in Google Scholar
38. Hay, R. W., Albedyhl, S., Lightfoot, P. Trans. Met. Chem. 1998, 23, 257–260; https://doi.org/10.1023/A:1015744413792..10.1023/A:1015744413792Suche in Google Scholar
39. Holt, E. M., Alcock, N. W., Sumner, R. H., Asplund, R. O. Cryst. Struct. Commun. 1979, 8, 255..Suche in Google Scholar
40. Quail, J. W., Paulose, T. A. P., Foley, S. R. private communication (2009) CCDC Nr. 739507.Suche in Google Scholar
41. Baumgartner, O. Z. Kristallogr. 1986, 174, 253–263; https://doi.org/10.1524/zkri.1986.174.14.253..Suche in Google Scholar
42. Guo, Y., Wang, X., Li, Y., Wang, E., Xu, L., Hu, C. J. Coord. Chem. 2004, 57, 445–451; https://doi.org/10.1080/00958970410001671084..Suche in Google Scholar
43. Withers, J. R., Li, D., Triplet, J., Ruschman, C., Parkin, S., Wang, G., Yee, G. T., Holmes, S. M. Polyhedron 2007, 26, 2353–2366; https://doi.org/10.1016/j.poly.2007.01.049..Suche in Google Scholar
44. Avdeeva, V. V., Polyakova, I. N., Goeva, L. V., Buzanov, G. A., Malinina, E. A., Kuznetsov, N. T. Inorg. Chim. Acta 2016, 451, 129–134; https://doi.org/10.1016/j.ica.2016.07.016..Suche in Google Scholar
45. Silva, R. M., Gwengo, C., Lindeman, S. V., Smith, M. D., Long, G. J., Grandjean, F., Gardinier, J. R. Inorg. Chem. 2008, 47, 7233–7242; https://doi.org/10.1021/ic8005794..Suche in Google Scholar PubMed
46. Ferko, P. J., Withers, J. R., Nguyen, H., Allison, C., Ema, J., Ema, T., Rath, N. P., Zhang, Y.-Z., Holmes, S. M. Polyhedron 2017, 123, 344–352; https://doi.org/10.1016/j.poly.2016.11.047..Suche in Google Scholar
47. Nitschke, C., Köckerling, M. Inorg. Chem. 2011, 50, 4313–4321; https://doi.org/10.1021/ic102278z..Suche in Google Scholar PubMed
48. McKee, V., Metcalfe, T., Wikaira, J. Acta Crystallogr. 1996, C52, 1139–1141; https://doi.org/10.1107/S010827019501523X..Suche in Google Scholar
49. Albinati, A., Calderazzo, F., Marchetti, F., Mason, S. A., Melai, B., Pampaloni, G., Rizzato, S. Inorg. Chem. Commun. 2007, 10, 902–905; https://doi.org/10.1016/j.inoche.2007.03.035..Suche in Google Scholar
50. Ito, M., Mitsuhashi, R., Mikuriya, M., Sakiyama, H. X-ray Struct. Anal. Online 2016, 32, 21–22; https://doi.org/10.2116/xraystruct.32.21..Suche in Google Scholar
51. Rojas-Dotti, C., Moliner, N., González, R., Martínez-Lillo, J. J. Coord. Chem. 2018, 71, 737–747; https://doi.org/10.1080/00958972.2017.1423477..Suche in Google Scholar
52. Kaplan, P. T., Xu, L., Chen, B., McGarry, K. R., Yu, S., Wang, H., Vicic, D. A. Organometallics 2013, 32, 7552–7558; https://doi.org/10.1021/om401016k..Suche in Google Scholar
53. Zhang, Z.-G., Wang, T., Niu, S.-Y., Dong, W.-T., Fan, Y.-G., Xuexiao, G. Chem. J. Chin. Univ. 1992, 13, 1582–1585. http://www.cjcu.jlu.edu.cn/EN/abstract/article_10483.shtml.Suche in Google Scholar
54. Li, Y., Zhang, Z.-X., Li, K.-C., Song, W.-D., Cui, X.-B., Pan, L.-Y. J. Mol. Struct. 2007, 1–3, 102–106; https://doi.org/10.1016/j.molstruc.2006.12.039..Suche in Google Scholar
55. Udalova, L. I., Adonin, S. A., Abramov, P. A., Korolkov, I. V., Sokolov, M. N. Russ. J. Coord. Chem. 2017, 43, 368–372; https://doi.org/10.1134/S1070328417050086..Suche in Google Scholar
56. Che, G., Qian, T.-T., Shi, H.-T., Jia, A.-Q., Zhang, Q.-F. J. Cluster Sci. 2018, 29, 83–91; https://doi.org/10.1007/s10876-017-1308-8..Suche in Google Scholar
57. Bogachev, N. A., Starova, G. L., Razzhivin, A. V., Skripkin, M. Y., Nikolskii, A. B. Russ. J. Gen. Chem. 2018, 88, 1–6; https://doi.org/10.1134/S1070363218010012..Suche in Google Scholar
58. Young, A. C. M., Walters, M. A., Dewan, J. C. Acta Crystallogr. 1989, C45, 1733–1736; https://doi.org/10.1107/S0108270189003501..Suche in Google Scholar
59. White, J. M., McInnis, L., Donnelly, P. S. private communication (2014) CCDC Nr. 1036000.Suche in Google Scholar
60. Olmstead, M. M., Marlin, D. S., Mascharak, P. K. private communication (2015) CCDC Nr. 1053817.Suche in Google Scholar
61. Ghandour, Y., Hammami, I., Najmudin, S., Bonifácio, C., Belkhiria, M. S. Acta Crystallogr. 2016, E72, 448–451; https://doi.org/10.1107/S2056989016003546..Suche in Google Scholar
62. Skelton, B. W., Harrowfield, J. M. private communication (2017) CCDC Nr. 1589427.Suche in Google Scholar
63. Berthet, J.-C., Thuéry, P., Ephritikhine, M. Polyhedron 2006, 25, 1700–1706; https://doi.org/10.1016/j.poly.2005.11.010..Suche in Google Scholar
64. Huang, Q., Wu, X., Lu, J. Polyhedron 1997, 16, 833–838; https://doi.org/10.1016/S0277-5387(96)00328-2..Suche in Google Scholar
65. Jobic, S., Poirier-Coutansais, S., Evain, M., Brec, R. Mat. Res. Bull. 2001, 36, 2637–2647; https://doi.org/10.1016/S0025-5408(01)00755-3..Suche in Google Scholar
66. Mishra, S., Jeanneau, E., Ledoux, G., Daniele, S. CrystEngComm 2012, 14, 3894–3901; https://doi.org/10.1039/c2ce25120e..Suche in Google Scholar
67. Wang, M., Huang, S.-W., Li, J.-B., Gong, A.-W., Wu, H.-Y., Li, H.-H., Chen, Z.-R. J. Cluster Sci. 2012, 23, 383–393; https://doi.org/10.1007/s10876-012-0440-8..Suche in Google Scholar
68. Skelton, B. W., Harrowfield, J. M. private communication (2017) CCDC Nr. 1589285.Suche in Google Scholar
69. Berthet, J. C., Thuéry, P., Ephritikhine, M. Inorg. Chem. 2005, 44, 1142–1146; https://doi.org/10.1021/ic048603p..Suche in Google Scholar PubMed
70. Hoch, C., Simon, A. Z. Anorg. Allg. Chem. 2008, 634, 853–856; https://doi.org/10.1002/zaac.200700535..Suche in Google Scholar
71. Hoch, C., Simon, A. Angew. Chem. 2012, 124, 3316–3319; https://doi.org/10.1002/anie.201108064.Suche in Google Scholar
72. Tambornino, F., Hoch, C. Z. Anorg. Allg. Chem. 2015, 641, 537–542; https://doi.org/10.1002/zaac.201400561..Suche in Google Scholar
73. Tambornino, F., Sappl, J., Pultar, F., Cong, T. M., Hübner, S., Giftthaler, T., Hoch, C. Inorg. Chem. 2016, 55, 11551–11559; https://doi.org/10.1021/acs.inorgchem.6b02068..Suche in Google Scholar
74. Jantsch, G., Skalla, N., Jawurek, H. Z. Anorg. Allg. Chem. 1931, 201, 207–220; https://doi.org/10.1002/zaac.19312010119..Suche in Google Scholar
75. Reed, J. B., Hopkins, B. S., Audrieth, L. F., Selwood, P. W., Ward, R., Dejong, J. J. Anhydrous Rare Earth Chlorides, in: Simmons Booth, H., Ed; Inorg. Synth, Vol. 1, 1939; pp. 28–33.10.1002/9780470132326.ch11Suche in Google Scholar
76. Taylor, M. D. Chem. Rev. 1962, 62, 503–511; https://doi.org/10.1021/cr60220a001..Suche in Google Scholar
77. Meyer, G., Ax, P. Mat. Res. Bull. 1982, 17, 1447–1455; https://doi.org/10.1016/0025-5408(82)90231-8..Suche in Google Scholar
78. Jantsch, G., Jawurek, H., Skalla, N., Gawalowski, H. Z. Anorg. Allg. Chem. 1932, 207, 353–367; https://doi.org/10.1002/zaac.19322070404..Suche in Google Scholar
79. Jantsch, G., Grubitsch, H., Hoffmann, F., Alber, H. Z. Anorg. Allg. Chem. 1929, 185, 49–64; https://doi.org/10.1002/zaac.19291850104..Suche in Google Scholar
80. Hohmann, E., Bommer, H. Z. Anorg. Allg. Chem. 1941, 248, 383–396; https://doi.org/10.1002/zaac.19412480408..Suche in Google Scholar
81. Taylor, M. D., Grant, L. R. J. Am. Chem. Soc. 1955, 77, 1507–1508; https://doi.org/10.1021/ja01611a032..Suche in Google Scholar
82. Hohl, T., Sinn, T., Hoch, C. Z. Naturforsch. B 2020, 75, 509–516; https://doi.org/10.1515/znb-2020-0035..Suche in Google Scholar
83. Müller, M., Buchner, M. Inorg. Chem. 2019, 58, 13276–13284; https://doi.org/10.1021/acs.inorgchem.9b02139..Suche in Google Scholar PubMed
84. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/S0108767307043930..Suche in Google Scholar PubMed
85. Shannon, R. D. Acta Crystallogr. 1969, B25, 925–946; https://doi.org/10.1107/S0567740869003220..Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/ijcre-2019-0226).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide