Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
Abstract
Three salts of the common composition [EuCl2(X-tpy)2][EuCl4(X-tpy)]·nMeCN were obtained from EuCl3·6H2O and the respective organic ligands (X-tpy = 4′-phenyl-2,2′:6′,2″-terpyridine ptpy, 4′-(pyridin-4-yl)-2,2′:6′,2″-terpyridine 4-pytpy, and 4′-(pyridin-3-yl)-2,2′:6′,2″-terpyridine 3-pytpy). These ionic complexes are examples of salts, in which both cation and anion contain Eu3+ with the same organic ligands and chlorine atoms coordinated. As side reaction, acetonitrile transforms into acetamide resulting in the crystallization of the complex [EuCl3(ptpy)(acetamide)] (4). Salts [EuCl2(ptpy)2][EuCl4(ptpy)]·2.34MeCN (1), [EuCl2(4-pytpy)2][EuCl4(4-pytpy)]·0.11MeCN (2), and [EuCl2(3-pytpy)2][EuCl4(3-pytpy)]·MeCN (3) crystallize in different structures (varying in space group and crystal packing) due to variation of the rear atom of the ligand to a coordinative site. Additionally, we show and compare structural variability through the dimeric complexes [Eu2Cl6(ptpy)2(N,N′-spacer)]·N,N′-spacer (5, 6, 7) obtained from [EuCl3(ptpy)(py)] by exchanging the end-on ligand pyridine with several bipyridines (4,4′-bipyridine bipy, 1,2-bis(4-pyridyl)ethane bpa, and 1,2-bis(2-pyridyl)ethylene bpe). In addition, photophysical (photoluminescence) and thermal properties are presented.
Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.
Acknowledgments
Alexander E. Sedykh acknowledges the Studienstiftung des deutschen Volkes for a Ph.D. scholarship. The authors acknowledge Stephanie Maaß (Chemical Technology of Advanced Materials, Julius-Maximilians-Universität Würzburg) for synthesis of 4′-phenyl-2,2′:6′,2″-terpyridine.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: The Studienstiftung des Deutschen Volkes.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Durham, D. A., Frost, G. H., Hart, F. A. Lanthanide complexes-VIII tris(2,2′6′,2″-terpyridine)lanthanide(III)perchlorates: fluorescence and structure. J. Inorg. Nucl. Chem. 1969, 31, 833–838. https://doi.org/10.1016/0022-1902(69)80031-x.Search in Google Scholar
2. de Sá, G. F., de Silva, F. R., Malta, O. L. Synthesis, spectroscopy and photophysical properties of mixed ligand complexes of europium(III) and terbium(III). J. Alloys Compd. 1994, 207–208, 457–460. https://doi.org/10.1016/0925-8388(94)90263-1.Search in Google Scholar
3. Mürner, H.-R., Chassat, E., Thummel, R. P., Bünzli, J.-C. G. Strong enhancement of the lanthanide-centred luminescence in complexes with 4-alkylated 2,2′;6′,2″-terpyridines. J. Chem. Soc. Dalton Trans. 2000, 2809–2816, https://doi.org/10.1039/b003577g.Search in Google Scholar
4. Sedykh, A. E., Kurth, D. G., Müller-Buschbaum, K. Two series of lanthanide coordination polymers and complexes with 4′-phenylterpyridine and their luminescence properties. Eur. J. Inorg. Chem. 2019, 2019, 4564–4571. https://doi.org/10.1002/ejic.201900872.Search in Google Scholar
5. Carter, K. P., Thomas, K. E., Pope, S. J. A. A., Holmberg, R. J., Butcher, R. J., Murugesu, M., Cahill, C. L. Supramolecular assembly of molecular rare-earth – 3,5-dichlorobenzoic acid – 2,2′:6′,2″-terpyridine materials: structural systematics, luminescence properties, and magnetic behavior. Inorg. Chem. 2016, 55, 6902–6915. https://doi.org/10.1021/acs.inorgchem.6b00408.Search in Google Scholar PubMed
6. Suffren, Y., Golesorkhi, B., Zare, D., Guénée, L., Nozary, H., Eliseeva, S. V., Petoud, S., Hauser, A., Piguet, C. Taming lanthanide-centered upconversion at the molecular level. Inorg. Chem. 2016, 55, 9964–9972. https://doi.org/10.1021/acs.inorgchem.6b00700.Search in Google Scholar PubMed
7. August Ridenour, J., Carter, K. P., Cahill, C. L. RE-p-halobenzoic acid–terpyridine complexes, part III: structural and supramolecular trends in a series of p-iodobenzoic acid rare-earth hybrid materials. Cryst. Eng. Comm. 2017, 19, 1190–1203. https://doi.org/10.1039/c6ce02356h.Search in Google Scholar
8. Golesorkhi, B., Guénée, L., Nozary, H., Fürstenberg, A., Suffren, Y., Eliseeva, S. V., Petoud, S., Hauser, A., Piguet, C. Thermodynamic programming of erbium(III) coordination complexes for dual visible/near-infrared luminescence. Chem. A Eur. J. 2018, 24, 13158–13169. https://doi.org/10.1002/chem.201802277.Search in Google Scholar PubMed
9. Beves, J. E., Constable, E. C., Decurtins, S., Dunphy, E. L., Housecroft, C. E., Keene, T. D., Neuburger, M., Schaffner, S., Zampese, J. A. Structural diversity in the reactions of 4′-(pyridyl)-2,2′:6′,2″-terpyridine ligands and bis{4′-(4-pyridyl)-2,2′:6′,2″-terpyridine}iron(II) with copper(II) salts. Cryst. Eng. Comm. 2009, 11, 2406. https://doi.org/10.1039/b909639f.Search in Google Scholar
10. Heine, J., Westemeier, H., Dehnen, S. Synthesis, characterization and fluorescent properties of three one-dimensional coordination polymers derived from polypyridyl ligands. Z. Anorg. Allg. Chem. 2010, 636, 996–1001. https://doi.org/10.1002/zaac.201000049.Search in Google Scholar
11. Kiskin, M., Zorina-Tikhonova, E., Kolotilov, S., Goloveshkin, A., Romanenko, G., Efimov, N., Eremenko, I. Synthesis, structure, and magnetic properties of a family of complexes containing a {CoII2DyIII} pivalate core and a pentanuclear CoII4DyIII derivative. Eur. J. Inorg. Chem. 2018, 2018, 1356–1366. https://doi.org/10.1002/ejic.201701056.Search in Google Scholar
12. Drath, O., Gable, R. W., Moubaraki, B., Murray, K. S., Boskovic, C. Synthesis and properties of cobalt(II) coordination polymers linked by 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine. Polyhedron 2018, 151, 323–329. https://doi.org/10.1016/j.poly.2018.05.052.Search in Google Scholar
13. Okawara, T., Feng, J., Abe, M., Hisaeda, Y. Aquabis(1,1,1,5,5,5-hexafluoroacetylacetonato)[4-(4-pyridyl)-2,2′:6′,2″-terpyridine]ytterbium(III) chloride methanol monosolvate monohydrate. Acta Crystallogr. 2012, E68, m29–m30. https://doi.org/10.1107/S1600536811052378.Search in Google Scholar PubMed PubMed Central
14. Zhang, C.-F., Huang, H.-X., Liu, B., Chen, M., Qian, D.-J. Spectroscopic study on the 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine and its metal complexes. J. Lumin. 2008, 128, 469–475. https://doi.org/10.1016/j.jlumin.2007.09.017.Search in Google Scholar
15. Gou, L., Wu, Q. R., Hu, H. M., Qin, T., Xue, G. L., Yang, M. L., Tang, Z. X. A new family of lanthanide terpyridine nitrate complexes: solvothermal syntheses, crystal structures and luminescent properties of [Ln(pytpy)(NO3)2(μ-OCH3)]2. Inorg. Chim. Acta 2008, 361, 1922–1928. https://doi.org/10.1016/j.ica.2007.10.009.Search in Google Scholar
16. Wu, W.-J., Wang, J., Chen, M., Qian, D.-J., Liu, M. Terpyridine-functionalized nano-SiO2 multi-dentate linkers: preparation, characterization and luminescent properties of their metal–organic hybrid materials. J. Phys. Chem. C 2017, 121, 2234–2242. https://doi.org/10.1021/acs.jpcc.6b11510.Search in Google Scholar
17. Ghosh, S., Abbas, Z., Dasari, S., Patra, A. K. Luminescent Eu3+ and Tb3+ complexes of 4-aminophenyl terpyridine (ptpy): photophysical aspects, DNA and serum protein binding properties. J. Lumin. 2017, 187, 46–52. https://doi.org/10.1016/j.jlumin.2017.02.063.Search in Google Scholar
18. Chen, X.-Y., Bretonnière, Y., Pécaut, J., Imbert, D., Bünzli, J.-C., Mazzanti, M. Selective self-assembly of hexameric homo- and heteropolymetallic lanthanide wheels: synthesis, structure, and photophysical studies. Inorg. Chem. 2007, 46, 625–637. https://doi.org/10.1021/ic061806o.Search in Google Scholar PubMed
19. Bretonnière, Y., Mazzanti, M., Pécaut, J., Olmstead, M. M. Cation-controlled self-assembly of a hexameric europium wheel. J. Am. Chem. Soc. 2002, 124, 9012–9013. https://doi.org/10.1021/ja012177e.Search in Google Scholar PubMed
20. Puntus, L. N., Lyssenko, K. A., Pekareva, I. S., Bünzli, J.-C. G. Intermolecular interactions as actors in energy-transfer processes in lanthanide complexes with 2,2′-bipyridine. J. Phys. Chem. B 2009, 113, 9265–9277. https://doi.org/10.1021/jp902390z.Search in Google Scholar PubMed
21. Puntus, L. N., Lyssenko, K. A., Pekareva, I. S., Antipin, M. Y. Characterisation of geometric isomers of europium chlorides with 2,2′-bipyridine based on X-ray diffraction, luminescence and quantum chemical data. Mol. Phys. 2010, 108, 557–572. https://doi.org/10.1080/00268971003610242.Search in Google Scholar
22. Zong, R., Zhang, G., Eliseeva, S. V., Bünzli, J.-C. G., Thummel, R. P. Eu(III) complexes of tetradentate ligands related to 2,9-di(pyrid-2′-yl)-1,10-phenanthroline and 2,2′-bi-1,10-phenanthroline. Inorg. Chem. 2010, 49, 4657–4664. https://doi.org/10.1021/ic100338t.Search in Google Scholar
23. Wessner, D., Giorgetti, A., Bünzli, J.-C. G. Complexes of lanthanoid nitrates with 21-crown-7 ether. Inorg. Chim. Acta 1982, 65, L25–L28. https://doi.org/10.1016/s0020-1693(00)93481-9.Search in Google Scholar
24. Bünzli, J.-C. G., Pradervand, G.-O. The Eu(III) ion as luminescent probe: laser‐spectroscopic investigation of the metal ion sites in an 18‐crown‐6 complex. J. Chem. Phys. 1986, 85, 2489–2497. https://doi.org/10.1063/1.451057.Search in Google Scholar
25. Plancherel, D. Eu(III) as a sensitive probe of ligand conformation in dicyclohexyl-18-crown-6 complexes. Inorg. Chim. Acta 1987, 139, 297–298. https://doi.org/10.1016/s0020-1693(00)84100-6.Search in Google Scholar
26. Yang, G., Liu, S., Jin, Z. Coordination chemistry and structure characterization of C18H36O6N2Eu2(NO3)6·H2O. Inorg. Chim. Acta 1987, 131, 125–128. https://doi.org/10.1016/s0020-1693(00)87918-9.Search in Google Scholar
27. Moret, E., Nicolò, F., Plancherel, D., Froidevaux, P., Bünzli, J.-C. G., Chapuis, G. Structural and luminescence study of the 3:2 complex between europium nitrate and the B isomer of dicyclohexyl-18-crown-6. Helv. Chim. Acta 1991, 74, 65–78. https://doi.org/10.1002/hlca.19910740109.Search in Google Scholar
28. Evans, W. J., Shreeve, J. L., Ziller, J. W., Doedens, R. J. Structural diversity in solvated lanthanide halide complexes. Inorg. Chem. 1995, 34, 576–585. https://doi.org/10.1021/ic00107a009.Search in Google Scholar
29. Willey, G. R., Meehan, P. R., Woodman, T. J., Drew, M. G. B. Identification of the dysprosium(III) chloride solvate DyCl3(THF)3.5: crystal structure of the ion pair [trans-DyCl2(THF)5] [trans-DyCl4(THF)2]. Polyhedron 1997, 16, 623–627. https://doi.org/10.1016/0277-5387(96)00315-4.Search in Google Scholar
30. Deacon, G. B., Feng, T., Junk, P. C., Skelton, B. W., Sobolev, A. N., White, A. H. Preparation and X-ray crystal structures of tetrahydrofuran-complexed rare earth chlorides — a structurally rich series. Aust. J. Chem. 1998, 51, 75. https://doi.org/10.1071/c97174.Search in Google Scholar
31. Petriček, S. Syntheses of lanthanide bromide complexes from oxides and the crystal structures of [LnBr3(DME)2] (Ln = Pr, Nd, Sm, Eu), [LnBr3(THF)4] (Ln = Pr, Sm) and [EuBr2(THF)5][EuBr4(THF)2]. Polyhedron 2004, 23, 2293–2301.10.1016/j.poly.2004.07.009Search in Google Scholar
32. Gompa, T. P., Rice, N. T., Russo, D. R., Aguirre Quintana, L. M., Yik, B. J., Bacsa, J., La Pierre, H. S. Diethyl ether adducts of trivalent lanthanide iodides. Dalt. Trans. 2019, 48, 8030–8033. https://doi.org/10.1039/c9dt00775j.Search in Google Scholar PubMed
33. Ohki, Y., Nakamura, M., Suzuki, Y., Nagai, K., Shimoi, M., Ouchi, A. The synthesis and the crystal and molecular structure of [tris(dibutyl sulfoxide)bis(O,O′-diisopropyl dithiophosphato)neodymium(III)] [tetrakis(O,O′-diisopropyl dithiophosphato)neodymium(III)] [Nd{(C3H7O)2PS2}2{(C4H9)2SO}3][Nd{(C3H7O)2PS2}4. Bull. Chem. Soc. Jpn. 1985, 58, 1593–1594. https://doi.org/10.1246/bcsj.58.1593.Search in Google Scholar
34. Petriček, S. Synthesis of lanthanide bromide complexes from oxides. the crystal structures of [LnBr2(diglyme)2][LnBr4(diglyme)] (Ln = Sm, Eu) and [LnBr2(HMPA)4]Br·0.5H2O (Ln = La, Sm). Z. Anorg. Allg. Chem. 2005, 631, 1947–1952.10.1002/zaac.200500172Search in Google Scholar
35. Aspinall, H. C., Bickley, J. F., Greeves, N., Kelly, R. V., Smith, P. M. Lanthanide pybox complexes as catalysts for enantioselective silylcyanation of aldehydes. Organometallics 2005, 24, 3458–3467. https://doi.org/10.1021/om050197+.10.1021/om050197+Search in Google Scholar
36. Andreiadis, E. S., Demadrille, R., Imbert, D., Pécaut, J., Mazzanti, M. Remarkable tuning of the coordination and photophysical properties of lanthanide ions in a series of tetrazole-based complexes. Chem. A Eur. J. 2009, 15, 9458–9476. https://doi.org/10.1002/chem.200900912.Search in Google Scholar PubMed
37. Petrosyants, S. P., Ilyukhin, A. B., Gavrikov, A. V., Mikhlina, Y. A., Puntus, L. N., Varaksina, E. A., Efimov, N. N., Novotortsev, V. M. Luminescent and magnetic properties of mononuclear lanthanide thiocyanates with terpyridine as auxiliary ligand. Inorg. Chim. Acta 2019, 486, 499–505. https://doi.org/10.1016/j.ica.2018.11.006.Search in Google Scholar
38. Sedykh, A. E., Sotnik, S. A., Kurth, D. G., Volochnyuk, D. M., Kolotilov, S. V., Müller-Buschbaum, K. Similarities of coordination polymer and dimeric complex of europium(III) with joint and separate terpyridine and benzoate. Z. Anorg. Allg. Chem., in press. https://doi.org/10.1002/zaac.201900319.Search in Google Scholar
39. Wang, J., Hanan, G. A facile route to sterically hindered and non-hindered 4′-aryl-2,2′:6′,2″-terpyridines. Synlett 2005, 2005, 1251–1254.10.1002/chin.200541148Search in Google Scholar
40. Apex 2 Suite; BRUKER AXS Inc.: Madison, WI, USA, 2014.Search in Google Scholar
41. XPREP (Version 2014/7), Program for symmetry analysis and data reduction of diffraction experiments; Bruker AXS Inc.: Madison, WI, USA, 2014.Search in Google Scholar
42. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
43. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122. https://doi.org/10.1107/s0108767307043930.Search in Google Scholar PubMed
44. Hübschle, C. B., Sheldrick, G. M., Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. https://doi.org/10.1107/s0021889811043202.Search in Google Scholar
45. Wrighton, M. S., Ginley, D. S., Morse, D. L. Technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 1974, 78, 2229–2233. https://doi.org/10.1021/j100615a009.Search in Google Scholar
46. Tagai, T., Takeda, H., Fukuda, T. Superstructure of tetrataenite from the Saint Severin meteorite. Zeitschrift für Krist. Cryst. Mater. 1995, 210, 14–18. https://doi.org/10.1524/zkri.1995.210.1.14.Search in Google Scholar
47. Höller, C. J., Mai, M., Feldmann, C., Müller-Buschbaum, K. The interaction of rare earth chlorides with 4,4′-bipyridine for the reversible formation of template based luminescent Ln-N-MOFs. Dalt. Trans. 2010, 39, 461–468. https://doi.org/10.1039/b911460b.Search in Google Scholar PubMed
48. Matthes, P. R., Nitsch, J., Kuzmanoski, A., Feldmann, C., Steffen, A., Marder, T. B., Müller-Buschbaum, K. The Series of rare earth complexes [Ln2Cl6(μ-4,4′-bipy)(py)6], Ln = Y, Pr, Nd, Sm-Yb: a molecular model system for luminescence properties in MOFs based on LnCl3 and 4,4′-bipyridine. Chem. A Eur. J. 2013, 19, 17369–17378. https://doi.org/10.1002/chem.201302504.Search in Google Scholar PubMed
49. Bazzicalupi, C., Bencini, A., Bianchi, A., Giorgi, C., Masotti, A., Valtancoli, B., Fusi, V., Roque, A., Pina, F. pH Modulation of the luminescence emission of a new europium cryptate complex. Chem. Commun. 2000, 561–562, https://doi.org/10.1039/a909581k.Search in Google Scholar
50. Lhoste, J., Henry, N., Loiseau, T., Abraham, F. Molecular assemblies of trichloride neodymium and europium complexes chelated by 1,10-phenanthroline. Polyhedron 2011, 30, 1289–1294. https://doi.org/10.1016/j.poly.2011.02.020.Search in Google Scholar
51. Xue, J., Hua, X., Yang, L., Xu, Y., Li, W., Zhao, G., Zhang, G., Wu, J. Spectroscopic characterization and the coordination behavior of isonicotinamide with lanthanide ions. J. Mol. Struct. 2013, 1052, 93–101. https://doi.org/10.1016/j.molstruc.2013.08.044.Search in Google Scholar
52. Burdinski, D., Pikkemaat, J. A., Lub, J., de Peinder, P., Nieto Garrido, L., Weyhermüller, T. Lanthanide complexes of triethylenetetramine tetra-, penta-, and hexaacetamide ligands as paramagnetic chemical exchange-dependent saturation transfer contrast agents for magnetic resonance imaging: nona- versus decadentate coordination. Inorg. Chem. 2009, 48, 6692–6712. https://doi.org/10.1021/ic900652y.Search in Google Scholar PubMed
53. Golubev, D. V., Albov, D. V., Kravchenko, V. V., Alikberova, L. Y., Rukk, N. S. Structural features of the crystalline iodide complexes of some rare-earth elements with carbamide and acetamide. Russ. J. Coord. Chem. 2010, 36, 820–827. https://doi.org/10.1134/s1070328410110060.Search in Google Scholar
54. Höller, C. J., Matthes, P., Beckmann, J., Müller-Buschbaum, K. MOF formation vs. reversible high ligand uptake in anhydrous halides: Two opposing aspects of 3∞[La2Cl6(4,4′-bipy)5]·4(4,4′-bipy). Z. Anorg. Allg. Chem. 2010, 636, 395–399. https://doi.org/10.1002/zaac.200900359.Search in Google Scholar
55. Dannenbauer, N., Matthes, P. R., Müller-Buschbaum, K. Luminescent coordination polymers for the VIS and NIR range constituting LnCl3 and 1,2-bis(4-pyridyl)ethane. Dalt. Trans. 2016, 45, 6529–6540. https://doi.org/10.1039/c6dt00152a.Search in Google Scholar PubMed
56. Dannenbauer, N., Matthes, P. R., Scheller, T. P., Nitsch, J., Zottnick, S. H., Gernert, M. S., Steffen, A., Lambert, C., Müller-Buschbaum, K. Near-infrared luminescence and inner filter effects of lanthanide coordination polymers with 1,2-di(4-pyridyl)ethylene. Inorg. Chem. 2016, 55, 7396–7406. https://doi.org/10.1021/acs.inorgchem.6b00447.Search in Google Scholar PubMed
57. Batrice, R. J., Adcock, A. K., Cantos, P. M., Bertke, J. A., Knope, K. E. Synthesis and characterization of an isomorphous lanthanide-thiophenemonocarboxylate series (Ln = La–Lu, except Pm) amenable to color tuning. Cryst. Growth Des. 2017, 17, 4603–4612. https://doi.org/10.1021/acs.cgd.7b00400.Search in Google Scholar
58. Ramirez, A. L., Knope, K. E., Kelley, T. T., Greig, N. E., Einkauf, J. D., De Lill, D. T. Structure and luminescence of a 2-dimensional 2,3-pyridinedicarboxylate coordination polymer constructed from lanthanide(III) dimers. Inorg. Chim. Acta 2012, 392, 46–51. https://doi.org/10.1016/j.ica.2012.05.039.Search in Google Scholar
59. Lunstroot, K., Driesen, K., Nockemann, P., Viau, L., Mutin, P. H., Vioux, A., Binnemans, K. Ionic liquid as plasticizer for europium(III)-doped luminescent poly(methyl methacrylate) films. Phys. Chem. Chem. Phys. 2010, 12, 1879–1885. https://doi.org/10.1039/b920145a.Search in Google Scholar PubMed
60. Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. https://doi.org/10.1016/j.ccr.2015.02.015.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2020-0053).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Articles in the same Issue
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide