Abstract
Yellow prismatic crystals of rubidium bromido-antimonate(III) Rb7Sb3Br16 and of two different modifications of thallium bromido-bismuthate(III) Tl7Bi3Br16 were obtained by solvent-free synthesis and by precipitation from acidic aqueous solutions. X-ray diffraction analyses revealed the Tl7Bi3I16-type for α-Tl7Bi3Br16 (orthorhombic, Cmcm, a = 2324.31(8) pm, b = 1346.69(4) pm, c = 3460.0(1) pm; Pearson symbol oC312) and a new structure type for β-Tl7Bi3Br16 (monoclinic, C2/c, a = 2331.87(5) pm, b = 1343.33(3) pm, c = 3546.01(7) pm, β = 102.708(1)°; mC312). The antimonate Rb7Sb3Br16 adopts the Tl7Bi3I16-type, too (orthorhombic, Cmcm, a = 2347.16(3) pm, b = 1357.89(5) pm, c = 3539.47(9) pm; oC312). The crystal structures of α- and β-Tl7Bi3Br16 comprise alternating slabs of isolated [BiBr6]3– octahedra and [Bi2Br10]4– octahedra pairs. Both structure types are hierarchically organized and can be regarded as sphere close packing with the same stacking sequence, if octahedra and octahedra pairs are replaced by spheres of equal size. The structural relationship between the Tl7Bi3I16-type and the hydrate Na7Bi3Br16 · 18H2O, which comprises similar structural features, is discussed.
Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.
Acknowledgments
We thank Dr. Gudrun Auffermann, Max Planck Institute for Chemical Physics of Solids, Dresden, for ICP-OES, ICP-MS and CIC analyses.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Fisher, G. A., Norman, N. C. The structures of the group 15 element (III) halides and halogenoanions. Adv. Inorg. Chem. 1994, 41, 233–271.10.1016/S0898-8838(08)60173-7Suche in Google Scholar
2. Preitschaft, C. Ternäre und quaternäre Materialien mit komplexen Thio-, Selenido- und Halogenid-Anionen. Ph. D. Thesis, Universität Regensburg: Regensburg, Germany, 2004.Suche in Google Scholar
3. Chang, J.-H., Doert, T., Ruck, M. (H3O)3Sb2Br9: the first member of the M3E2X9 structure family with oxonium cations. Acta Crystallogr. C 2016, 72, 966–970; https://doi.org/10.1107/S2053229616017198.Suche in Google Scholar PubMed
4. Beck, J., Benz, S. Crystalline and glassy phases in the ternary system Tl/Bi/Cl: synthesis and crystal structures of the Thallium(I) Chloridobismutates(III). Z. Anorg. Allg. Chem. 2010, 636, 928–935; https://doi.org/10.1002/zaac.200900567.Suche in Google Scholar
5. Aussieker, T., Keller, H. L., Oldag, T., Prots, Y., Ruck, M., Wosylus, A. Syntheses and crystal structures of the Thallium(I) Iodobismuthates(III) Tl7Bi3I16 and Tl3BiI6. Z. Anorg. Allg. Chem. 2007, 633, 603–609; https://doi.org/10.1002/zaac.200600379.Suche in Google Scholar
6. Wosylus, A., Schwarz, U., Ruck, M. The crystal structure of Tl3Bi2I9: a complex defect and deformation variant of the Perovskite structure type. Z. Anorg. Allg. Chem. 2005, 631, 1055–1059; https://doi.org/10.1002/chin.200529029.Suche in Google Scholar
7. Hagemann, M., Weber, H. J. Are ternary halides useful materials for nonlinear optical applications? Appl. Phys. 1996, A63, 67–74; https://doi.org/10.1007/BF01579747.Suche in Google Scholar
8. Kelly, A. W., Nicholas, A., Ahern, J. C., Chan, B., Patterson, H. H., Pike, R. D. Alkali metal bismuth (III) chloride double salts. J. Alloys Compd. 2016, 670, 337–345; https://doi.org/10.1016/j.jallcom.2016.02.055.Suche in Google Scholar
9. Lazarini, F. Sodium Hexabromobismuthate(III) Decabromodibismuthate(III) 18-hydrate. Acta Crystallogr. B 1980, 36, 2748–2750; https://doi.org/10.2165/00003495-197612060-00001.Suche in Google Scholar PubMed
10. Kun, S. V., Lazarev, V. B., Peresh, E. Y., Kun, A. V., Voroshilov, Y. V. Phase equilibria in RbBr– -Sb(Bi)Br3 systems and crystal structure of compounds of A3(I)B2(V)C9(VII) Type (A(I)=Rb, Cs, B(V) = Sb, BI, C(VII) = Br, I). Izv. Akad. Nauk SSSR, Neorg. Mater. 1993, 29, 445–450.Suche in Google Scholar
11. Kun, S. V., Peresh, E. Y., Lazarev, V. B., Kun, A. V. Phase equilibria, preparation, and properties of compounds in the systems CsBr–Bi (Sb) Br3. Izv. Akad. Nauk SSSR Neorg. Mater. 1991, 27, 611–615.Suche in Google Scholar
12. Chang, J.-H., Wolff, A., Ruck, M. Crystal structures of MBi2Br7 (M = Rb, Cs) – filled variants of AX7 sphere packing. Z. Anorg. Allg. Chem. 2016, 642, 456–460; https://doi.org/10.1002/zaac.201500820.Suche in Google Scholar
13. Chang, J.-H., Doert, T., Ruck, M. Structural variety of defect Perovskite variants M3E2X9 (M = Rb, Tl, E = Bi, Sb, X = Br, I). Z. Anorg. Allg. Chem. 2016, 643, 736–748; https://doi.org/10.1002/zaac.201600179.Suche in Google Scholar
14. Chang, J.-H. Crystal Structures of oP-Cs3BiBr6 (Cs3YbCl6 type[26]) and mC-Cs3BiBr6 (Cs3BiCl6 type[27]); unpublished.Suche in Google Scholar
15. Lazarini, F. Caesium enneabromodibismuthate (III). Acta Crystallogr. B 1977, 33, 2961–2964; https://doi.org/10.1107/S0567740877009984.Suche in Google Scholar
16. Lazarini, F. Rubidium hexabromobismuthate (III). Acta Crystallogr. B 1978, 34, 2288–2290; https://doi.org/10.1107/S0567740878007918.Suche in Google Scholar
17. Aleksandrova, I. P., Burriel, R., Bartolome, J., Bagautdinov, B. S., Blasco, J., Sukhovsky, A. A., Torres, J. M., Vasiljev, A. D., Solovjev, L. A. Low-temperature phase transitions in the trigonal modification of Cs3Bi2Br9 and Cs3Sb2I9. Phase Transit. 2002, 75, 607–620; https://doi.org/10.1080/01411590290029863a.Suche in Google Scholar
18. Liang, L., Gao, P. Lead-free hybrid Perovskite absorbers for viable application: can we eat the cake and have it too? Adv. Sci. 2018, 5, 1700331; https://doi.org/10.1002/advs.201700331.Suche in Google Scholar
19. Fu, H. Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: from materials to solar cells. Solar Energy Mater. Solar Cells 2019, 193, 107–132; https://doi.org/10.1016/j.solmat.2018.12.038.Suche in Google Scholar
20. APEX2, Version 2014/9. Bruker AXS Inc.: Madison, WI, USA, 2014.10.1016/S1365-6937(14)70258-8Suche in Google Scholar
21. Sheldrick, M. Sadabs: Area-Detector Absorption Correction, Version 2014/4, Bruker AXS Inc.: Madison, WI, USA, 2014.Suche in Google Scholar
22. X-Shape, Crystal Optimization for Numerical Absorption Correction Program, Version 2.12.2, Stoe & Cie GmbH: Darmstadt, 2009.Suche in Google Scholar
23. Sheldrick, G. M. SHELX2014. Programs for Crystal Structure Determination. Universität Göttingen, Germany, 2014.Suche in Google Scholar
24. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122; https://doi.org/10.1107/S0108767307043930.Suche in Google Scholar PubMed
25. Gelato, L. M., Parthé, E. Structure Tidy – a computer program to standardize crystal structure data. J. Appl. Cryst. 1987, 20, 139–143; https://doi.org/10.1107/S0021889887086965.Suche in Google Scholar
26. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. D 2009, 65, 148–155; https://doi.org/10.1107/S090744490804362X.Suche in Google Scholar PubMed PubMed Central
27. Brandenburg, K. Diamond 4. Crystal Impact GbR: Bonn, 2017.Suche in Google Scholar
28. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767; https://doi.org/10.1107/S0567739476001551.Suche in Google Scholar
29. Isaeva, A., Ruck, M. Crystal chemistry and bonding patterns of bismuth-based topological insulators. Inorg. Chem. 2020, 59, 3437–3451; https://doi.org/10.1021/acs.inorgchem.9b03461.Suche in Google Scholar
30. Lin, R.-G., Xu, G., Wang, M.-S., Lu, G., Li, P.-X., Guo, G.-C. Improved photochromic properties on viologen-based inorganic–organic hybrids by using π-conjugated substituents as electron donors and stabilizers. Inorg. Chem. 2013, 52, 1199–1205; https://doi.org/10.1021/ic301181b.Suche in Google Scholar
31. Adonin, S. A., Gorokh, I. D., Novikov, A. S., Samsonenko, D. G., Korolkov, I. V., Sokolov, M. N., Fedin, V. P. Bromobismuthates: cation-induced structural diversity and Hirshfeld surface analysis of cation–anion contacts. Polyhedron 2018, 139, 282–288; https://doi.org/10.1016/j.poly.2017.11.002.Suche in Google Scholar
32. Moon, T. H., Oh, S.-J., Ok, K. M. [((R)-C8H12N)4][Bi2Br10] and [((S)-C8H12N)4][Bi2Br10]: chiral hybrid bismuth bromides templated by chiral organic cations. ACS Omega 2018, 3, 17895–17903; https://doi.org/10.1021/acsomega.8b02877.Suche in Google Scholar
33. Chabot, B., Parthé, E. Cs3Sb2I9 and Cs3Bi2I9 with the hexagonal Cs3Cr2Cl9 structure type. Acta Crystallogr. B 1978, 34, 645–648; https://doi.org/10.1107/S0567740878003684.Suche in Google Scholar
34. Sebastian, J., Seifert, H.-J. Ternary chlorides in the systems ACl/YbCl3 (A = Cs, Rb, K). Thermochim. Acta 1997, 318, 29–37; https://doi.org/10.1016/S0040-6031(98)00326-8.Suche in Google Scholar
35. Benachenhou, F., Mairesse, G., Nowogrocki, G., Thomas, D. Structural studies of Cs-K-Bi mixed chlorides relation to the crystal structures of A2BMX6, A3MX6, and A2MX6. J. Solid State Chem. 1986, 65, 13–26; https://doi.org/10.1016/0022-4596(86)90085-X.Suche in Google Scholar
36. Tang, Y., Liang, M., Chang, B., Sun, H., Zheng, K., Pullerits, T., Chi, Q. Lead-free double halide perovskite Cs3BiBr6 with well-defined crystal structure and high thermal stability for optoelectronics. J. Mater. Chem. C 2019, 7, 3369–3374; https://doi.org/10.1039/C8TC05480K.Suche in Google Scholar
37. Mattfeld, H., Meyer, G. Ternäre halogenide vom Typ A3MX6. I. A3YCl6 (A = K, NH4, Rb, Cs): synthese, strukturen, thermisches verhalten. Über einige analoge Chloride der Lanthanide. Z. Anorg. Allg. Chem. 1992, 618, 13–17.10.1002/zaac.19926180103Suche in Google Scholar
38. Schilling, G., Böcker, M., Möller, A., Meyer, G. Neue gemischtvalente ternäre bromide und iodide mit dysprosium und Thulium vom Typ A5M3X12. Z. Anorg. Allg. Chem. 2001, 627, 1309–1312; https://doi.org/10.1002/1521-3749(200106)627:6<1309::AID-ZAAC1309>3.0.CO;2-W.10.1002/1521-3749(200106)627:6<1309::AID-ZAAC1309>3.0.CO;2-WSuche in Google Scholar
Supplementary material
The online version of this article offers supplementary material https://doi.org/zkri-2020-0013.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Artikel in diesem Heft
- Frontmatter
- In this issue
- Original papers
- Ulrich Müller zum 80. Geburtstag gewidmet
- Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
- The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
- Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
- Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
- New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
- Structure solution of incommensurately modulated La6MnSb15
- Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
- On tungstates of divalent cations (III) – Pb5O2[WO6]
- Hydrogen order in hydrides of Laves phases
- High-pressure synthesis of SmGe3
- The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
- Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
- Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
- Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
- Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
- Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide