Home Physical Sciences Hydrogen order in hydrides of Laves phases
Article
Licensed
Unlicensed Requires Authentication

Hydrogen order in hydrides of Laves phases

  • Holger Kohlmann EMAIL logo
Published/Copyright: July 24, 2020

Abstract

Many Laves phases AM2 takes up hydrogen to form interstitial hydrides in which hydrogen atoms partially occupy A2M2, AM3, and/or M4 tetrahedral interstices. They often exhibit temperature-driven order-disorder phase transitions, which are triggered by repulsion of hydrogen atoms occupying neighboring tetrahedral interstices. Because of the phase widths with respect to hydrogen a complete ordering, i.e., full occupation of all hydrogen positions is usually not achieved. Order-disorder transitions in Laves phase hydrides are thus phase transitions between crystal structures with different degrees of hydrogen order. Comparing the crystal structures of ordered and disordered phases reveals close symmetry relationships in all known cases. This allows new insights into the crystal chemical description of such phases and into the nature of the phase transitions. Structural relationships for over 40 hydrides of cubic and hexagonal Laves phases ZrV2, HfV2, ZrCr2, ZrCo2, LaMg2, CeMg2, PrMg2, NdMg2, SmMg2, YMn2, ErMn2, TmMn2, LuMn2, Lu0.4Y0.6Mn2 YFe2, and ErFe2 are concisely described in terms of crystallographic group-subgroup schemes (Bärnighausen trees) covering 32 different crystal structure types, 26 of which represent hydrogen-ordered crystal structures.


Dedicated to Professor Dr. Ulrich Müller on the occasion of his 80th birthday.



Corresponding author: Holger Kohlmann, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103Leipzig, Germany, E-mail:

Acknowledgements

My sincere thanks goes to Prof. Dr. Hartmut Bärnighausen, Prof. Dr. H. P. Beck and Prof. Dr. U. Müller for many fruitful discussions on crystallographic group-subgroup relationships and to Hannah Kohlmann for language polishing.

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declares no conflicts of interest regarding this article.

References

1. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 1. Aufl.; Vieweg+Teubner Verlag: Wiesbaden, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

2. Wondratschek, H., Müller, U. Eds., International Tables for Crystallography. Vol. A1: Symmetry Relations Between Space Groups; Springer: United States, 2004.Search in Google Scholar

3. Müller, U. Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

4. Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. MATCH 1980, 9, 139–175.Search in Google Scholar

5. Hoffmann, R.-D., Pöttgen, R. AlB2-related intermetallic comounds - a comprehensive view based on group-subgroup relationships. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar

6. Pöttgen, R. Coloring, distortions, and puckering in selected intermetallic structures from the perspective of group-subgroup relations. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

7. Kohlmann, H. Structural relationships in complex hydrides of the late transition metals. Z. Kristallogr. 2009, 224, 454–460; https://doi.org/10.1524/zkri.2009.1179.Search in Google Scholar

8. Laves, F., Wallbaum, H. J. Über den Einfluß geometrischer Faktoren auf die stöchiometrische Formel metallischer Verbindungen, gezeigt an der Kristallstruktur des KNa2. Z. Anorg. Allg. Chem. 1942, 250, 110–120; https://doi.org/10.1002/zaac.19422500110.Search in Google Scholar

9. Laves, F. Factors governing crystal structure. In Intermetallic Compounds; Westbrook, J. H., Ed. John Wiley & Sons: New York, 1967; pp. 129–143.Search in Google Scholar

10. Nesper, R. Chemische Bindungen – intermetallische Verbindungen. Angew. Chem. 1991, 103, 805–834; https://doi.org/10.1002/ange.19911030709.Search in Google Scholar

11. Stein, F., Palm, M., Sauthoff, G. Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Search in Google Scholar

12. Ormeci, A., Simon, A., Grin, Yu. Topologie der Kristallstruktur und chemische Bindung in Laves-Phasen. Angew. Chem. 2010, 122, 9182–9186; https://doi.org/10.1002/ange.201001534.Search in Google Scholar

13. Shaltiel, D., Jacob, I., Davidov, D. Hydrogen absorption and desorption properties of AB2 Laves-Phase pseudobinary compounds. J. Less-Common Met. 1977, 53, 117–131; https://doi.org/10.1016/0022-5088(77)90162-X.Search in Google Scholar

14. Shaltiel, D. Hydride properties of AB2 Laves Phase compounds. J. Less-Common Met. 1978, 62, 407–416; https://doi.org/10.1016/0022-5088(78)90055-3.Search in Google Scholar

15. Shoemaker, D. P., Shoemaker, C. B. Concerning atomic sites and capacities for hydrogen absorption in the AB2 Friauf-Laves Phases. J. Less-Common Met. 1979, 68, 43–58; https://doi.org/10.1016/0022-5088(79)90271-6.Search in Google Scholar

16. Ivey, D. G., Northwood, D. O. Storing Hydrogen in AB2 Laves-type compounds. Z. Phys. Chem. 1986, 147, 191–209; https://doi.org/10.1524/zpch.1986.147.1_2.191.Search in Google Scholar

17. Miedema, A. R., Buschow, K. H. J., Van Mal, H. H. Which intermetallic compounds of transition metals form stable hydrides?. J. Less-Common Met. 1976, 49, 463–472; https://doi.org/10.1016/0022-5088(76)90057-6.Search in Google Scholar

18. Westlake, D. G. Hydrogen Sites in A2BHy. J. Solid State Chem. 1984, 53, 130–135; https://doi.org/10.1016/0022-4596(84)90235-4.Search in Google Scholar

19. Semenenko, K. N., Burnasheva, V. V. Physicochemistry and crystallochemistry of intermetallic hydrides containing rare earths and transition metals. J. Less-Common Met. 1985, 105, 1–11; https://doi.org/10.1016/0022-5088(85)90121-3.Search in Google Scholar

20. Michalowicz, O., Gupta, M., Michel, N. Hydrogen-induced modifications of the electronic structure of intermetallic compounds. J. Alloys Compd. 2002, 330–332, 328–331; https://doi.org/10.1016/S0925-8388(01)01584-5.Search in Google Scholar

21. Smithson, H., Marianetti, C. A., Morgan, D., Van der Ven, A., Predite, A., Ceder, G. First-principle study of the stability and electronic structure of metal hydrides. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 66, 144107; https://doi.org/10.1103/PhysRevB.66.144107.Search in Google Scholar

22. Matar, S. F. Intermetallic hydrides: a review with ab initio aspects. Prog. Solid State Chem. 2010, 38, 1–37; https://doi.org/10.1016/j.progsolidstchem.2010.08.003.Search in Google Scholar

23. Yvon, K., Fischer, P. Crystal and magnetic structures of ternary metal hydrides: a comprehensive review. In Hydrogen in Intermetallic Compounds I, Electronic, Thermodynamic and Crystallographic Properties, Preparation; L. Schlapbach, Ed. Springer: Berlin, 1988, pp. 87–138.10.1007/3540183337_11Search in Google Scholar

24. Bououdina, M., Menier, P., Soubeyroux, J. L., Fruchart, D. Study of the system Zr1-xTix(Cr0.5M0.4V0.1)2 – H2 (0 ≤ x ≤ 0.2, M = Fe, Co, Ni). J. Alloys Compd. 1997, 253–254, 302–307; https://doi.org/10.1016/S0925-8388(96)02901-5.Search in Google Scholar

25. Sun, K., Guo, X., Liu, Y., Wang, H. Neutron diffraction study of the deuterides of Zr0.9Ti0.1MnCr Laves phase alloy. Phys. B Condens. Matter 2006, 385–386, 137–140; https://doi.org/10.1016/j.physb.2006.05.302.Search in Google Scholar

26. Moriwaki, Y., Gamo, T., Seri, H., Iwaki, T. Electrode characteristics of C15-type Laves phases. J. Less-Common Met. 1991, 172–174, 1211–1218; https://doi.org/10.1016/S0022-5088(06)80029-9.Search in Google Scholar

27. Hong, K. The development of hydrogen storage alloys and the progress of nickel hydride batteries. J. Alloys Compd. 2001, 321, 307–313; https://doi.org/10.1016/S0925-8388(01)00957-4.Search in Google Scholar

28. Somenkov, V. A., Irodova, A. V. Lattice structure and phase transition of hydrogen in metallic compounds. J. Less-Common Met. 1984, 101, 481–492. https://doi.org/10.1016/0022-5088(84)90124-3.Search in Google Scholar

29. Miron, N. F., Shcherbak, V. I., Bykov, V. N., Levdik, V. A. Structural study of the quasibinary Zr0.35Ti0.65-H(D) system. Sov. Phys. Crystallogr. 1971, 16, 266–269.Search in Google Scholar

30. Didisheim, J.-J., Yvon, K., Shaltiel, D., Fischer, P., Bujard, P., Walker, E. The distribution of the deuterium atoms in the deuterated cubic Laves-Phase ZrV2D4.5. Solid State Commun. 1979, 32, 1087–1090; https://doi.org/10.1016/0038-1098(79)90836-6.Search in Google Scholar

31. Irodova, A. V., Glazkov, V. P., Somenko, V. A., Shil’stein, S. Sh. Investigation of a phase transition in HfV2D4. Sov. Phys. Solid State 1980, 22, 45–50.Search in Google Scholar

32. Irodova, A. V., Lavrova, O. A., Laskova, G. V., Padurets, L. N. Phase transition in cubic deuteride ZrCr2D4. Sov. Phys. Solid State 1982, 24, 22–27.Search in Google Scholar

33. Kohlmann, H., Fauth, F., Yvon, K. Hydrogen order in monoclinic ZrCr2H3.8. J. Alloys Compd. 1999, 285, 204–211; https://doi.org/10.1016/S0925-8388(99)00027-4.Search in Google Scholar

34. Aoki, K., Yamamoto, T., Masumoto, T. Hydrogen induced amorphization in RNi2 Laves Phases. Scr. Metall. 1987, 21, 27–31; https://doi.org/10.1016/0036-9748(87)90401-7.Search in Google Scholar

35. Aoki, K., Masumoto, T. Hydrogen-induced amorphization of intermetallics. J. Alloys Compd. 1995, 231, 20–28; https://doi.org/10.1016/0925-8388(95)01832-8.Search in Google Scholar

36. Kohlmann, H. Metal hydrides. In Encyclopedia of Physical Sciences and Technology, 3rd ed.; Meyers, R. A., Ed. Academic Press: Cambridge, MA, 2002; pp. 441–458.10.1016/B0-12-227410-5/00426-9Search in Google Scholar

37. Fischer, P., Fauth, F., Böttger, G., Skripov, A. V., Kozhanov, V. N. Neutron diffraction study of the location of deuterium in the deuterium-stabilized HfTi2D4 phase. J. Alloys Compd. 1999, 282, 184–186; https://doi.org/10.1016/S0925-8388(98)00832-9.Search in Google Scholar

38. Hempelmann, R., Skripov, A. Hydrogen motion in metals. In Hydrogen Transfer Reactions; Hynes, J. T., Klinman, J. P., Limbach, H. H., Schowen, R. L., Eds. Wiley VCH: Weinheim, 2007; pp. 787–829.10.1002/9783527611546.ch26Search in Google Scholar

39. Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C., Weller, M. T. Structural isotope effects in metal hydrides and deuterides. Phys. Chem. Chem. Phys. 2010, 12, 2083–2088; https://doi.org/10.1039/B914135A.Search in Google Scholar

40. Weller, M. T., Henry, P. F., Ting, V. P., Wilson, C. C. Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction. Chem. Commun. 2009, 2973–2989; https://doi.org/10.1039/B821336D.Search in Google Scholar

41. Baur, W. H., Kassner, D. The perils of Cc: comparing the frequencies of falsely assigned space groups with their general population. Acta Crystallogr. 1992, B48, 356–369; https://doi.org/10.1107/s0108768191014726.Search in Google Scholar

42. Kohlmann, H., Yvon, K. Revision of the low-temperature structures of rhombohedral ZrCr2Dx (x ∼ 3.8), and monoclinic ZrV2Dx (1.1 < x < 2.3) and HfV2Dx (x ∼ 1.9). J. Alloys Compd. 2000, 309, 123–126; https://doi.org/10.1016/S0925-8388(00)01040-9.Search in Google Scholar

43. Skripov, A. V., Karkin, A. E., Mirmelstein, A. V. Hydrogen-induced anomalies in the heat capacity of C15-type ZrCr2Hx (ZrCr2Dx). J. Phys.: Condens. Matter 1997, 9, 1191–1200; https://doi.org/10.1088/0953-8984/9/6/006.Search in Google Scholar

44. Fernández, J. F., Kemali, M., Ross, D. K., Sánchez, C. An empirical potential for interstistial hydrogen in some C-15 Laves phase compounds from IINS measurements. J. Phys.: Condens. Matter 1999, 11, 10353–10373; https://doi.org/10.1088/0953-8984/11/50/327.Search in Google Scholar

45. Skripov, A. V., Natter, H., Hempelmann, R. Neutron spectroscopic evidence of a low-temperature phase transition in C15-type ZrCr2Hx (x = 0.2 and 0.45). Solid State Commun. 2001, 120, 265–268; https://doi.org/10.1016/S0038-1098(01)00392-1.Search in Google Scholar

46. Skripov, A. V., Hempelmann, R. Effects of hydrogen ordering on the vibrational spectra of H(D) in HfV2H4-yDy. Solid State Commun. 2006, 140, 435–438; https://doi.org/10.1016/j.ssc.2006.09.017.Search in Google Scholar

47. Irodova, A. V., André, G., Bourée, F. Hydrogen redistribution in the solid solutions ZrV2Dx, 2.2 ≤ x ≤ 2.7. II. Structure of the intermediate phase: ‘Lattice liquid crystal’. A neutron-diffraction study. J. Alloys Compd. 2003, 350, 196–204; https://doi.org/10.1016/S0925-8388(02)01000-9.Search in Google Scholar

48. Bogdanova, A. N., Irodova, A. V., André, G., Bourée, F. Novel superstructure in the high-concentrated hydrogen solid solutions ZrV2Dx>4. J. Alloys Compd. 2005, 396, 25–28; https://doi.org/10.1016/j.jallcom.2004.12.013.Search in Google Scholar

49. Bogdanova, A. N., Irodova, A. V., André, G., Bourée, F. The ZrV2D6 crystal structure. J. Alloys Compd. 2003, 356–357, 50–53; https://doi.org/10.1016/S0925-8388(02)01214-8.Search in Google Scholar

50. Landau, L. D., Lifshitz, E. M. Statistical Physics; Pergamon Press: London, 1958.Search in Google Scholar

51. Irodova, A. V., Suard, E. Evolution of hydrogen superstructure with k = (½, ½, ½) in ZrV2D2+δ, -0.8< δ <0.2. J. Alloys Compd. 1999, 291, 184–189; https://doi.org/10.1016/S0925-8388(99)00275-3.Search in Google Scholar

52. Irodova, A. V., Borisov, I. I. Neutron-diffraction investigations of the order-disorder phase transition in ZrV2D3, k = (001). Phys. Solid State Engl. Transl. 1994, 36, 960–963.Search in Google Scholar

53. Kohlmann, H, Fauth, F., Fischer, P., Skripov, A. V., Yvon, K. Low-temperature deuterium ordering in the cubic Laves phase derivative α-ZrCr2D0.66. J. Alloys Compd. 2001, 327, L4–L9; https://doi.org/10.1016/S0925-8388(01)01565-1.Search in Google Scholar

54. Černý, R., Joubert, J.-M., Kohlmann, H., Yvon, K. Mg6Ir2H11, a new metal hydride containing saddle-like [IrH4]5− and square-pyramidal [IrH5]4− hydrido complexes. J. Alloys Compd. 2002, 340, 180–188; https://doi.org/10.1016/S0925-8388(02)00050-6.Search in Google Scholar

55. Zolliker, P., Yvon, K., Jorgensen, J. D., Rotella, F. J. Structural studies of the hydrogen storage material Mg2NiH4. 2. Monoclinic low-temperature structure. Inorg. Chem. 1986, 25, 3590–3593. https://doi.org/10.1021/ic00240a012.Search in Google Scholar

56. Bronger, W., Müller, P., Schmitz, D., Spittank, H. Synthese und Struktur von Na2PtH4, einem ternären Hydrid mit quadratisch planaren PtH42--Baugruppen. Z. Anorg. Allg. Chem. 1984, 516, 35–41; https://doi.org/10.1002/zaac.19845160906.Search in Google Scholar

57. Gingl, F., Yvon, K., Vogt, T., Hewat, A. Synthesis and crystal structure of tetragonal LnMg2H7 (Ln = La, Ce), two Laves phase hydride derivatives having ordered hydrogen distribution. J. Alloys Compd. 1997, 253–254, 313–317; https://doi.org/10.1016/S0925-8388(96)02992-1.Search in Google Scholar

58. Werwein, A., Maaß, F., Dorsch, L. Y., Janka, O., Pöttgen, R., Hansen, T. C., Kimpton, J., Kohlmann, H. Hydrogenation Properties of Laves Phases LnMg2 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Ho, Er, Tm, Yb). Inorg. Chem. 2017, 56, 15006–15014; https://doi.org/10.1021/acs.inorgchem.7b02319.Search in Google Scholar PubMed

59. Kohlmann, H., Werner, F., Yvon, K., Hilscher, G., Reissner, M., Cuello, G. J. Neutron powder diffraction with natSm: crystal structures and magnetism of a binary samarium deuteride and a ternary samarium magnesium deuteride. Chem.–Eur. J. 2007, 13, 4178–4186; https://doi.org/10.1002/chem.200601116.Search in Google Scholar

60. Yvon, K., Kohlmann, H., Bertheville, B. Europium-hydrogen bond distances in saline metal hydrides by neutron diffraction. Chimia 2001, 55, 505–509.10.2533/chimia.2001.505Search in Google Scholar

61. Kohlmann, H. Solid-state structures and properties of europium and samarium hydrides. Eur. J. Inorg. Chem. 2010, 2582–2593; https://doi.org/10.1002/ejic.201000107.Search in Google Scholar

62. Paul-Boncour, V., Filipek, S. M., Marchuk, I., André, G., Bourée, F., Wiesinger, G., Percheron-Guégan, A. Structural and magnetic properties of ErFe2D5 studied by neutron diffraction and Mössbauer spectroscopy. J. Phys.: Condens. Matter 2003, 15, 4349–4359.10.1088/0953-8984/15/25/306Search in Google Scholar

63. Wiesinger, G., Paul-Boncour, V., Filipek, S. M., Reichl, C., Marchuk, I., Percheron-Guégan, A. Structural and magnetic properties of RFe2Dx (R = Zr, Y and x ≥ 3.5) studied by means of neutron diffraction and 57Mössbauer spectroscopy. J. Phys.: Condens. Matter 2005, 17, 893–908; https://doi.org/10.1088/0953-8984/17/6/009.Search in Google Scholar

64. Paul-Boncour, V., Guillot, M., Isnard, O., Ouladdiaf, B., Hoser, A., Hansen, T., Stuesser, N. Interplay between crystal and magnetic structures in YFe2(DαD1-α)4.2 compounds studied by neutron diffraction. J. Solid State Chem. 2017, 245, 98–109; https://doi.org/10.1016/j.jssc.2016.09.002.Search in Google Scholar

65. Latroche, M., Paul-Boncour, V., Percheron-Guégan, A., Bourée-Vigneron, F. Crystallographic study of YFe2D3,5 by X-ray and neutron powder diffraction. J. Solid State Chem. 1997, 133, 568–571; https://doi.org/10.1006/jssc.1997.7514.Search in Google Scholar

66. Goncharenko, I. N., Mirebeau, I., Irodova, A. V., Suard, E. Interplay of magnetic and hydrogen order in the laves hydride YMn2H4.3. Phys. Rev. B: Condens. Matter Mater. Phys. 1997, 56, 2580–2584; https://doi.org/10.1103/physrevb.56.2580.Search in Google Scholar

67. Sherstobitova, E. A., Gubkin, A., Stashkova, L. A., Mushnikov, N. V., Terent’ev, P. B., Cheptiakov, D., Teplykh, A. E., Park, J., Pirogov, A. N. Crystal structure of ErFe2D3.1 and ErFe2H3.1 at 450K J. Alloys Compd. 2010, 508, 348–353; https://doi.org/10.1016/j.jallcom.2010.04.043.Search in Google Scholar

68. Paul-Boncour, V., Bourée-Vigneron, F., Filipek, S. M., Marchuk, I., Jacob, I., Percheron-Guégan, A. Neutron diffraction study of ZrM2Dx deuterides (M = Fe, Co). J. Alloys Compd. 2003, 356–357, 69-72; https://doi.org/10.1016/S0925-8388(03)00102-6.Search in Google Scholar

69. Latroche, M., Paul-Boncour, V., Percheron-Guégan, A., Bourée-Vigneron, F., André, G. Structural and magnetic properties of low D content YMn2 deuteride. J. Solid State Chem. 2000, 154, 398–404; https://doi.org/10.1006/jssc.2000.8801.Search in Google Scholar

70. Paul-Boncour, V., Guénée, L., Latroche, M., Percheron-Guégan, A., Ouladdiaf, B., Bourée-Vigneron, F. Elaboration, structures, and phase transitions for YFe2Dx compounds (x = 1.3, 1.75, 1.9, 2.6) studied by neutron diffraction. J. Solid State Chem. 1999, 142, 120–129; https://doi.org/10.1006/jssc.1998.7995.Search in Google Scholar

71. Seidel, S., Pöttgen, R. Group-subgroup schemes for MoNi4, Nb4N5, KxFe2-ySe2, Bd10Au3As8O10 and CsInCl3: i5 superstructures of I4/m allowing atom, charge or vacancy ordering. Z. Kristallogr. 2020, 235, 29–39; https://doi.org/10.1515/zkri-2019-0069.Search in Google Scholar

72. Irodova, A. V., Suard, E. Order-disorder transition in the deuterated hexagonal (C14-type) Laves phase ZrCr2D3.8. J. Alloys Compd. 2000, 299, 32–28; https://doi.org/10.1016/S0925-8388(99)00685-4.Search in Google Scholar

73. Makarova, O. L., Goncharenko, I. N., Irodova, A. V., Mirebeau, I., Suard, E. Interplay of magnetic and hydrogen ordering in the hexagonal Laves hydrides. Phys. Rev. B: Condens. Matter Mater. Phys. 2002, 676, 104423.10.1103/PhysRevB.66.104423Search in Google Scholar

74. Budziak, A., Żurek, M., Żukrowski, J., Balanda, M., Pacyna, A., Czapla, M. Influence of hydrogen on structural and magnetic properties of the hexagonal Laves phase HoMn2. J. Magn. Magn. Mater 2012, 324, 735–741; https://doi.org/10.1016/j.jmmm.2011.09.007.Search in Google Scholar

75. Budziak, A., Rusinek, D. Determination of magnetic structure of hexagonal and cubic HoMn2D2.0 deuterides, proposal PHY-01-2976. In BER II Experimental Reports 2012; Rödig, A., Pearce, P., Brandt, A., Eds.; Berichte des Helmholtz-Zentrums Berlin, 47, 2013; pp. 51–52.Search in Google Scholar

76. Hahn, T., Ed. International Tables for Crystallography, 5th ed. Springer: Berlin, 2002.Search in Google Scholar

77. Didisheim, J.-J., Yvon, K., Fische, P., Shaltiel, D. The deuterium site occupation in ZrV2Dx as a function of the deuterium concentration. J. Less-Common Met. 1980, 73, 355–362; https://doi.org/10.1016/0022-5088(80)90329-X.Search in Google Scholar

78. Perminov, V. P. Structural characterstics and crystal chemistry of binary magnides. Powder Metall. Met. Ceram. 1967, 6, 409–416; https://doi.org/10.1007/BF00775401.Search in Google Scholar

79. Saccone, A., Delfino, S., Borzone, G., Ferro, R. The samarium-magnesium system: a phase diagram. J. Less-Common Met. 1989, 154, 47–60; https://doi.org/10.1016/0022-5088(89)90169-0.Search in Google Scholar

80. Przewoznik, J., Paul-Boncour, V., Latroche, M., Percheron-Guégan, A. X-ray diffraction and extended X-ray absorption fine-structure study of RMn2 hydrides (R = Y, Gd or Dy), J. Alloys Compd. 1996, 232, 107–118. https://doi.org/10.1016/0925-8388(95)01995-2.Search in Google Scholar

81. Paul-Boncour, V., Private Communication, 2000.Search in Google Scholar

Received: 2020-02-18
Accepted: 2020-04-27
Published Online: 2020-07-24
Published in Print: 2020-09-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Downloaded on 30.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zkri-2020-0043/html
Scroll to top button