Abstract
Recent progress in the production of heavy nuclei far from stability and in the studies of nuclear and chemical properties of heavy actinides is briefly reviewed. Exotic nuclear decay properties including nuclear fission of heavy nuclei, measurements of first ionization potentials of heavy actinides, and redox studies of heavy actinides are described. Brief history of discovery of the transuranium elements is also presented.
References
1. Öhrström, L., Reedijk, J.: Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC recommendations 2016). Pure Appl. Chem. 88, 1225 (2016).10.1515/pac-2016-0501Suche in Google Scholar
2. https://iupac.org/united-nations-proclaims-international-year-periodic-table-chemical-elements/; The United Nations proclaims the international year of the periodic table of chemical elements.Suche in Google Scholar
3. Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).10.1142/9789812795953_0007Suche in Google Scholar
4. Seaborg, G. T.: The transuranium elements, Science 104, 379 (1946).10.1126/science.104.2704.379Suche in Google Scholar PubMed
5. Seaborg, G. T., Loveland, W.: The Elements Beyond Uranium. John Wiley and Sons, Inc., New York (1990).Suche in Google Scholar
6. Seaborg, G. T.: Transuranium elements: the synthetic actinides. Radiochim. Acta 70/71, 69 (1995).10.1524/ract.1995.7071.special-issue.69Suche in Google Scholar
7. Seaborg, G. T.: Evolution of the modern periodic table. J. Chem. Soc. Dalton Trans. 3899 (1996).10.1039/dt9960003899Suche in Google Scholar
8. Hoffman, D. C., Ghiorso, A., Seaborg, G. T.: The transuranium people – the inside story. Imperial College Press, Singapore (2000).10.1142/p074Suche in Google Scholar
9. Hofmann, S.: On beyond uranium – Journey to the end of the periodic table. Taylor & Francis, London (2002).10.4324/9780203300985Suche in Google Scholar
10. Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J. (Eds.). The Chemistry of the Actinide and Transactinide Elements, 3rd Ed., Springer, Dordrecht (2006).10.1007/1-4020-3598-5Suche in Google Scholar
11. Türler, A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).10.1021/cr3002438Suche in Google Scholar PubMed
12. Nagame, Y., Hirata, M., Nakahara, H.: Production and Chemistry of Transuranium Elements. In: Handbook of Nuclear Chemsitry, Vol. 2, 2nd Edn., Vértes, A., Nagy, S., Klencsár, Z., Lovas, R. G., Rösch, F. (Eds.). Kluwer Academic Publishers, Dordrecht (2003), p. 818–875.Suche in Google Scholar
13. Nagame, Y., Hirata, M.: Production and properties of transuranium elements. Radiochim. Acta 99, 377 (2011).10.1524/ract.2011.1853Suche in Google Scholar
14. Hulet, E. K.: Chemistry of the elements einsteinium through element-105. Radiochim. Acta 32, 7 (1983).10.1524/ract.1983.32.13.7Suche in Google Scholar
15. Keller, Jr., O. L.: Chemistry of heavy actinides and light transactinides. Radiochim. Acta 37, 169 (1984).10.1524/ract.1984.37.4.169Suche in Google Scholar
16. Barber, R. C., Greenwood, N. N., Hrynkiewicz, A. Z., Jeannin, Y. P., Lefrot, M., Sakai, M., Ulehla, I., Wapstra, A. H., Wilkinson, D. H.: Discovery of the transfermium elements. Prog. Part. Nucl. Phys. 29, 453 (1992).10.1016/0146-6410(92)90008-PSuche in Google Scholar
17. Thoennessen, M.: Discovery of isotopes of elements with Z≥100. At. Data Nucl. Data Tables 99, 312 (2013).10.1016/j.adt.2012.03.003Suche in Google Scholar
18. Hamilton, J. H., Hofmann, S., Oganessian, Y. T.: Search for superheavy nuclei. Annu. Rev. Nucl. Part. Sci. 63, 383 (2013).10.1146/annurev-nucl-102912-144535Suche in Google Scholar
19. Oganessian, Yu. Ts., Utyonkov, U. K., Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944, 62 (2015).10.1016/j.nuclphysa.2015.07.003Suche in Google Scholar
20. Oganessian, Yu. Ts., Utyonkov, U. K.: Super-heavy element research. Rep. Prog. Phys. 78, 036301 (2015).10.1088/0034-4885/78/3/036301Suche in Google Scholar PubMed
21. Roberto, J. B., Alexander, C. W., Boll, R. A., Burn, J. D., Ezold, J. G., Felker, L. K., Hogle, S. L., Rykaczewski, K. P.: Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015).10.1016/j.nuclphysa.2015.06.009Suche in Google Scholar
22. Kratz, J. V., Loveland, W., Moody, K. J.: Synthesis of transuranium isotopes with atomic numbers Z≤103 in multi-nucleon transfer reactions. Nucl. Phys. A 944, 117 (2015).10.1016/j.nuclphysa.2015.06.004Suche in Google Scholar
23. Schädel, M., Kratz, J. V., Ahrens, H., Brüchle, W., Franz, G., Gäggeler, H., Warnecke, I., Wirth, G., Herrmann, G., Trautmann, N., Weis, M.: Isotope distributions in the reaction of 238U with 238U. Phys. Rev. Lett. 41, 469 (1978).10.1103/PhysRevLett.41.469Suche in Google Scholar
24. Schädel, M., Brüchle, W., Gäggeler, H., Kratz, J. V., Sümmerer, K., Wirth, G., Herrmann, G., Stakemann, R., Tittel, G., Trautmann, N., Nitschke, J. M., Hulet, E. K., Lougheed, R. W., Hahn, R. L., Ferguson, R. L.: Actinide production in collisions of 238U with 248Cm. Phys. Rev. Lett. 48, 852 (1982).10.1103/PhysRevLett.48.852Suche in Google Scholar
25. Kratz, J. V., Schädel, M., Gäggeler, H. W.: Reexamining the heavy-ion reactions 238U+238U and 238U+ 248Cm and actinide production close to the barrier. Phys. Rev. C 88, 054615 (2013).10.1103/PhysRevC.88.054615Suche in Google Scholar
26. Lougheed, R. W., Hulet, E. K., Wild, J. F., Moody, K. J., Dougan, R. J., Gannett, C. M., Henderson, R. A., Hoffman, D. C., Lee, D. M.: The discovery and spontaneous fission of properties of 262No, In: Proceedings of 50 Years with Nuclear Fission, National Academy of Sciences, Washington, D.C., and National Institute of Standards and Technology Gaithersburg, MD, Vol. II, La Grange Park, IL: American Nuclear Society (1989), pp. 694–697.Suche in Google Scholar
27. Zagrebaev, V., Greiner, W.: Production of new heavy isotopes in low-energy multinucleon transfer reactions. Phys. Rev. Lett. 101, 122701 (2008).10.1103/PhysRevLett.101.122701Suche in Google Scholar PubMed
28. Zagrebaev, V., Greiner, W.: New way for the production of heavy neutron-rich nuclei. J. Phys. G: Nucl. Part. Phys. 35, 125103 (2008).10.1088/0954-3899/35/12/125103Suche in Google Scholar
29. Dvorak, J., Block, M., Düllmann, Ch. E., Heinz, S., Herzberg, R.-D., Schädel, M.: IRiS – Exploring new frontiers in neutron-rich isotopes of the heaviest elements with a new inelastic reaction isotope separator. Nucl. Instrum. Meth. Phys. Res. A 652, 687 (2011).10.1016/j.nima.2010.08.124Suche in Google Scholar
30. Watanabe, Y. X., Hirayama, Y., Imai, N., Ishiyama, H., Jeong, S. C., Miyatake, H., Clement, E., de France, G., Navin, A., Rejmund, M., Schmitt, C., Pollarolo, G., Corradi, L., Fioretto, E., Montanari, D., Choi, S. H., Kim, Y. H., Song, J. S., Niikura, M., Suzuki, D., Nishibata, H., Takatsu, J.: Study of collisions of 136Xe+198Pt for the KEK isotope separator. Nucl. Instrum. Meth. Phys. Res. B 317, 752 (2013).10.1016/j.nimb.2013.04.036Suche in Google Scholar
31. Itkis, M. G., Vardaci, E., Itkis, I. M., Knyazheva, G. N., Kozulin, E. M.: Fusion and fission of heavy and superheavy nuclei (experiment). Nucl. Phys. A 944, 204 (2015).10.1016/j.nuclphysa.2015.09.007Suche in Google Scholar
32. Hinde, D. J.: Fusion and quasifission in superheavy element synthesis. Nucl. Phys. News 28, 13 (2018).10.1080/10619127.2017.1388688Suche in Google Scholar
33. Erler, J., Birge, N., Kortelainen, M., Nazarewicz, W.: The limits of the nuclear landscape. Nature 486, 509 (2012).10.1038/nature11188Suche in Google Scholar PubMed
34. Huang, W. J., Audi, G., Wang, M., Kondev, F. G., Naimi, S., Xu X.: The AME2016 atomic mass evaluation (I). Evaluation of input data; and adjustment procedures. Chin. Phys. C 41, 030002 (2017).10.1088/1674-1137/41/3/030002Suche in Google Scholar
35. Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., Xu X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2017).10.1088/1674-1137/41/3/030003Suche in Google Scholar
36. Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Nucl. Phys. A 944, 471 (2015).10.1016/j.nuclphysa.2015.09.009Suche in Google Scholar
37. Block, M.: Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure. Radiochim. Acta 107, 603 (2019).10.1515/ract-2019-0002Suche in Google Scholar
38. Block, M., Ackermann, D., Blaum, K., Droese, C., Dworschak, M., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Ketter, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plaß, W. R., Popeko, A., Rahaman, S., Rodríguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Weber, C.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010).10.1038/nature08774Suche in Google Scholar PubMed
39. Ramirez, E. M., Ackermann, D., Blaum, K., Block, M., Droese, C., Düllmann, Ch. E., Dworschak, M., Eibach, M., Eliseev, S., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Marx, G., Mazzocco, M., Nesterenko, M., Novikov, Yu. N., Plaß, W. R., Rodríguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Weber, C.: Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012).10.1126/science.1225636Suche in Google Scholar PubMed
40. Ito, Y., Schury, P., Wada, M., Arai, F., Haba, H., Hirayama, Y., Ishizawa, S., Kaji, D., Kimura, S., Koura, H., MacCormick, M., Miyatake, H., Moon, J. Y., Morimoto, K., Morita, K., Mukai, M., Meurray, I., Niwase, T., Okada, K., Ozawa, A., Rosenbusch, M., Takamine, A., Tanaka, T., Watanabe, Y. X., Wollnik, H., Yamaki, S.: First direct mass measurements of nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).10.1103/PhysRevLett.120.152501Suche in Google Scholar PubMed
41. Möller, P., Sierk, A. J., Ichikawa, T., Iwamoto, A., Mumpower, M.: Fission barriers at the end of the chart of the nuclides. Phys. Rev. C 91, 024310 (2015).10.1103/PhysRevC.91.024310Suche in Google Scholar
42. Asai, M., Heßberger, F. P., Lopez-Martens, A.: Nuclear structure of elements 100≤Z≤109 from alpha spectroscopy. Nucl. Phys. A 944, 308 (2015).10.1016/j.nuclphysa.2015.06.011Suche in Google Scholar
43. Theisen, Ch., Greenlees, P. T., Khoo, T.-L., Chowdhury, P., Ishii, T.: In-beam spectroscopy of heavy elements. Nucl. Phys. A 944, 333 (2015).10.1016/j.nuclphysa.2015.07.014Suche in Google Scholar
44. Dobaczewski, J., Afanasjev, A. V., Bender, M., Robledo, L. M., Shi, Y.: Properties of nuclei in the nobelium region studied within the covariant, Skyrme, and Gogny energy density functions. Nucl. Phys. A 944, 388 (2015).10.1016/j.nuclphysa.2015.07.015Suche in Google Scholar
45. Heenen, P.-H., Skalski, J., Staszczak, A., Vretenar, D.: Shapes and α- and β- decays of superheavy nuclei. Nucl. Phys. A 944, 415 (2015).10.1016/j.nuclphysa.2015.07.016Suche in Google Scholar
46. Baran, A., Kowal, M., Reinhard, P.-G., Robledo, L. M., Staszczak, A., Warda, M.: Fission barriers and probabilities of spomtaneous fission for elements with Z≥100. Nucl. Phys. A 944, 442 (2015).10.1016/j.nuclphysa.2015.06.002Suche in Google Scholar
47. Leino, M., Heßberger, F. P.: The nuclear structure of heavy-actinide and trans actinide nuclei. Ann. Rev. Nucl. Part. Sci. 54, 175 (2004).10.1146/annurev.nucl.53.041002.110332Suche in Google Scholar
48. Herzberg, R.-D., Greenlees, P. T.: In-beam and decay spectroscopy of transfermium nuclei. Prog. Part. Nucl. Phys. Phys. 61, 674 (2008).10.1016/j.ppnp.2008.05.003Suche in Google Scholar
49. Herzberg, R.-D., Cox, D. M.: Spectroscopy of actinide and transactinide nuclei. Radiochim. Acta 99, 441 (2011).10.1524/ract.2011.1858Suche in Google Scholar
50. Sobiczewski, A., Pomorski, K.: Description of structure and properties of superheavy nuclei. Prog. Part. Nucl. Phys. 58, 292 (2007).10.1016/j.ppnp.2006.05.001Suche in Google Scholar
51. Rudolph, D., Forsberg, U., Golubev, P., Sarmiento, L. G., Yakushev, A., Andersson, L.-L., Di Nitto, A., Düllmann, Ch. E., Gates, J. M., Gregorich, K. E., Gross, C. J., Heßberger, F. P., Herzberg, R.-D., Khuyagbaatar, J., Kratz, J. V., Rykaczewski, K., Schädel, M., Åberg, S., Ackermann, D., Block, M., Brand, H., Carlsson, B. G., Cox, D., Derkx, X., Eberhardt, K., Even, J., Fahlander, C., Gerl, J., Jäger, E., Kindler, B., Krier, J., Kojouharov, I., Kurz, N., Lommel, B., Mistry, A., Mokry, C., Nitsche, H., Omtvedt, J. P., Papadakis, P., Ragnarsson, I., Runke, J., Schaffner, H., Schausten, B., Thörle-Pospiech, P., Torres, T., Traut, T., Trautmann, N., Turler, A., Ward, A., Ward, D. E., Wiehl, N.: Spectroscopy of element 115 decay chains. Phys. Rev. Lett. 111, 112502 (2013).10.1103/PhysRevLett.111.112502Suche in Google Scholar PubMed
52. Gates, J. M., Gregorich, K. E., Gothe, O. R., Uribe, E. C., Pang, G. K., Bleuel, D. L., Block, M., Clark, R. D., Campbell, C. M., Crawford, H. L., Cromaz, M., Di Nitto, A., Düllmann, Ch. E., Esker, N. E., Fahlander, C., Fallon, P., Farjadi, R. M., Forsberg, U., Khuyagbaatar, J., Loveland, W., Macchiavelli, A. O., May, E. M., Mudder, P. R., Olive, D. T., Rice, A. C., Rissanen, J., Rudolph, D., Sarmiento, L. G., Shusterman, J. A., Stoyer, M. A., Wiens, A., Yakushev, A. Nitsche, H.: Decay spectroscopy of element 115 daughters: 280Rg→276Mt and 276Mt→272Bh. Phys. Rev. C 92, 021301 (2015).10.1103/PhysRevC.92.021301Suche in Google Scholar
53. Gates, J. M., Pang, G. K., Pore, J. L., Gregorich, K. E., Kwarsick, J. T., Savard, G., Esker, N. E., Kireeff Covo, M., Mogannam, M. J., Batchelder, J. C., Bleuel, D. L., Clark, R. M., Crawford, H. L., Fallon, P., Hubbard, K. K., Hurst, A. M., Kolaja, I. T., Macchiavelli, A. O., Morse, C., Orford, R., Phair, L., Stoyer, M. A.: First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).10.1103/PhysRevLett.121.222501Suche in Google Scholar PubMed
54. Walker, P., Dracoulis, G.: Energy traps in atomic nuclei. Nature 399, 35 (1999).10.1038/19911Suche in Google Scholar
55. Herzberg, R.-D., Greenless, P. T., Butler, P. A., Jones, G. D., Venhart, M., Darby, I. G., Eeckhaudt, S., Eskola, K., Grahn, T., Gray-Jones, C., Hessberger, F. P., Jones, P., Julin, R., Juutinen, S., Ketelhut, S., Korten, W., Leino, M., Leppänen, A.-P., Moon, S., Nyman, M., Page, R. D., Pakarinen, J., Pritchard, A., Rahkila, P., Sarén, J., Scholey, C., Steer, A., Sun, Y., Theisen, Ch., Uusitalo, J.: Nuclear isomers in superheavy elements as stepping stones towards the island of stability. Nature 442, 896 (2006).10.1038/nature05069Suche in Google Scholar
56. Hofmann, S., Heßberger, F. P., Ackermann, D., Antalic, S., Cagarda, P., Ćwiok, S., Kindler, B., Kojouharova, J., Lommel, B., Mann, R., Münzenberger, G., Popeko, A. G., Saro, S., Schött, H. J., Yeremin, A. V.: The new isotope 270110 and its decay products 266Hs and 262Sg. Eur. Phys. J. A 10, 5 (2001).10.1007/s100500170137Suche in Google Scholar
57. David, H. M., Chen, J., Seweryniak, D., Kondev, F. G., Gates, J. M., Gregorich, K. E., Ahmad, I., Albers, M., Alcorta, M., Back, B. B., Baartman, B., Bertone, P. F., Bernstein, L. A., Campbell, C. M., Carpenter, M. P., Chiara, C. J., Clark, R. M., Cromaz, M., Doherty, D. T., Dracoulis, G. D., Esker, N. E., Fallon, P., Gothe, O. R., Greene, J. P., Greenlees, P. T., Hartley, D. J., Hauschild, K., Hoffman, C. R., Hota, S. S., Janssens, R. V. F., Khoo, T. L., Konki, J., Kwarsick, J. T., Lauritsen, T., Macchiavelli, A. O., Mudder, P. R., Nair, C., Qiu, Y., Rissanen, J., Rogers, A. M., Ruotsalainen, P., Savard, G., Stolze, S., Wiens, A., Zhu, S.: Decay and fission hindrance of two- and four-quasiparticle K isomers in 254Rf. Phys. Rev. Lett. 115, 132502 (2015).10.1103/PhysRevLett.115.132502Suche in Google Scholar
58. Bjørnholm. S., Lynn, J. E.: The double-humped fission barrier. Rev. Mod. Phys. 52, 725 (1980).10.1103/RevModPhys.52.725Suche in Google Scholar
59. Thirolf, P. G., Habs, D.: Spectroscopy in the second and third minimum of actinide nuclei. Prog. Part. Nucl. Phys. 49, 325 (2002).10.1016/S0146-6410(02)00158-8Suche in Google Scholar
60. von der Wense, L. Seiferle, B., Laatiaoui, M., Neumayr, J. B., Maier, H.-J., Wirth, H.-F., Mokry, C., Runke, J., Eberhardt, K., Düllmann, Ch. E., Trautmann, N. G., Thirolf, P. G.: Direct detection of the 229Th nuclear clock transition. Nature 533, 47 (2016).10.1038/nature17669Suche in Google Scholar PubMed
61. Thielking, J., Okhapkin, M. V., Glowacki, P., Meier, D. M., von der Wense, L. Seiferle, B., Düllmann, Ch. E., Thirolf, P. G., Peik, E.: Laser spectroscopic characterization of the nuclear-clock isomer 229mTh. Nature 556, 321 (2018).10.1038/s41586-018-0011-8Suche in Google Scholar PubMed
62. Safronova, M.: In search of the nuclear clock. Nat. Phys. 14, 198 (2018).10.1038/nphys4349Suche in Google Scholar
63. Seiferle, B., von der Wense, L. Thirolf, P. G.: Lifetime measurement of the 229Th nuclear isomer. Phys. Rev. Lett. 118, 042501 (2017).10.1103/PhysRevLett.118.042501Suche in Google Scholar PubMed
64. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E., Schmidt, P. O.: Optical atomic clocks. Rev. Mod. Phys. 87, 637 (2015).10.1103/RevModPhys.87.637Suche in Google Scholar
65. Andreyev, A. N., Nishio, K., Schmidt, K.-H.: Nuclear fission: a review of experimental advances and phenomenology. Rep. Prog. Phys. 81, 016301 (2018).10.1088/1361-6633/aa82ebSuche in Google Scholar
66. Schmidt, K.-H., Jurado, B.: Review on the progress in nuclear fission – Experimental methods and theoretical descriptions. Rep. Prog. Phys. 81, 106301 (2018).10.1088/1361-6633/aacfa7Suche in Google Scholar
67. Hall, H. L., Hoffmanm D. C.: Delayed fission. Ann. Rev. Nucl. Part. Sci. 42, 147 (1992).10.1146/annurev.ns.42.120192.001051Suche in Google Scholar
68. Andreyev, A., Huyse, M., Van Duppen, P.: Beta-delayed fission of atomic nuclei. Rev. Mod. Phys. 85, 1541 (2013).10.1103/RevModPhys.85.1541Suche in Google Scholar
69. Cowan, J. J., Thielemann, F.-K., Truran, J. W.: The r-process and nucleochronology. Phys. Rep. 208, 267 (1991).10.1016/0370-1573(91)90070-3Suche in Google Scholar
70. Andreyev, A. N., Elseviers, J., Huyse, M., Van Duppen, P., Antalic, S., Barzakh, A., Bree, N., Cocolios, T. E., Comas, V. F., Diriken, J., Fedorov, D., Fedosseev, V., Franchoo, S., Heredia, J. A., Ivanov, O., Köster, U., Marsh, B. A., Nishio, K., Page, R. D., Patronis, N., Seliverstov, M., Tsekhanovich, I., Van den Bergh, P., Van den Walle, J., Venhart, M., Vermote, S., Veselsky, M., Wagemans, C., Ichikawa, T., Iwamoto, A., Möller, P., Sierk, A. J.: New type of asymmetric fission in proton-rich nuclei. Phys. Rev. Lett. 105, 252502 (2010).10.1103/PhysRevLett.105.252502Suche in Google Scholar PubMed
71. Wilson, G. L., Takeyama, M., Andreyev, A. N., Andel, B., Antalic, S., Catford, W. N., Ghys, L., Haba, H., Heßberger, F. P., Huang, M., Kaji, D., Kalaninova, Z., Morimoto, K., Morita, K., Murakami, M., Nishio, K., Orlandi, R., Smith, A. G., Tanaka, K., Wakabayashi, Y., Yamaki, S.: β-delayed fission of 230Am. Phys. Rev. C 96, 044315 (2017).10.1103/PhysRevC.96.044315Suche in Google Scholar
72. Konki, J., Khuyagbaatar, J., Uusitalo, J., Greenlees, P. T., Auranen, K., Badran, H., Block, M., Briselet, R., Cox, D. M., Dasgupta, M., Di Nitto, A., Dullmann, Ch. E., Grahn, T., Hauschild, K., Herzán, A., Herzberg, R.-D., Heßberger, F. P., Hinde, D. J., Julin, R., Juutinen, S., Jäger, E., Kindler, B., Krier, J., Leino, M., Lommel, B., Lopez-Martens, A., Luong, D. H., Mallaburn, M., Nishio, K., Pakarinen, J., Papadakis, P., Partanen, J., Peura, P., Rahkila, P., Rezynkina, K., Ruotsalainen, P., Sandzelius, M., Sarén, J., Scholey, C., Sorri, J., Stolze, S., Sulignano, B., Theisen, Ch., Ward, A., Yakushev, A., Yakusheva, V.: Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk. Phys. Lett. B 764, 265 (2017).10.1016/j.physletb.2016.11.038Suche in Google Scholar
73. Léguillon, R., Nishio, K., Hirose, K., Makii, H., Nishinaka, I., Orlandi, R., Tsukada, K., Smallcombe, J., Chiba, S., Aritomo, Y., Ohtsuki, T., Tatsuzawa, R., Takaki, N., Tamura, N., Goto, S., Tsekhanovich, I., Petrache, C. M., Andreyev, A. N.: Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O+232Th reaction. Phys. Lett. B 761, 125 (2016).10.1016/j.physletb.2016.08.010Suche in Google Scholar
74. Hirose, K., Nishio, K., Tanaka, S., Léguillon, R., Makii, H., Nishinaka, I., Orlandi, R., Tsukada, K., Smallcombe, J., Vermeulen, M. J., Chiba, S., Aritomo, Y., Ohtsuki, T., Nakano, K., Araki, S., Watanabe, Y., Tatsuzawa, R., Takaki, N., Tamura, N., Goto, S., Tsekhanovich, I., Andreyev, A. N.: Role of multichance fission in the description of fission-fragment mass distributions at high energies. Phys. Rev. Lett. 119, 222501 (2017).10.1103/PhysRevLett.119.222501Suche in Google Scholar PubMed
75. Heßberger, F. P., Spontaneous fission properties of superheavy elements. Eur. Phys. J. A 53, 75 (2017).10.1140/epja/i2017-12260-3Suche in Google Scholar
76. Hoffman, D. C., Holden, N. E.: Spontaneous fission half-lives for ground state nuclides. Pure Appl. Chem. 72, 1525 (2000).10.1351/pac200072081525Suche in Google Scholar
77. Hoffman, D. C., Lane, M. R.: Spontaneous fission. Radiochim. Acta 70/71, 135 (1995).10.1201/9781351075381-1Suche in Google Scholar
78. Balagna, J. P., Ford, G. P., Hoffman, D. C., Knight, J. D.: Mass symmetry in the spontaneous fission of 257Fm. Phys. Rev. Lett. 26, 145 (1971).10.1103/PhysRevLett.26.145Suche in Google Scholar
79. Hulet, E. K., Wild, J. F., Dougan, R. J., Lougheed, R. W., Landrum, J. H., Dougan, A. D., Schädel, M., Hahn, R. L., Baisden, P. A., Henderson, C. M., Dupzyk, R. J., Sümmerer, K., Bethune, G. R.: Bimodal symmetric fission observed in the heaviest elements. Phys. Rev. Lett. 56, 313 (1986).10.1103/PhysRevLett.56.313Suche in Google Scholar
80. Hulet, E. K., Wild, J. F., Dougan, R. J., Lougheed, R. W., Landrum, J. H., Dougan, A. D., Baisden, P. A., Henderson, C. M., Dupzyk, R. J., Hahn, R. L., Schädel, M., Sümmerer, K., Bethune, G. R.: Spontaneous fission properties of 258Fm, 259Md, 260Md, 258No, and 260[104]: Bimodal fission. Phys. Rev. C 40, 770 (1989).10.1103/PhysRevC.40.770Suche in Google Scholar
81. Ćwiok, S., Rozmej, P., Sobiczewski, A., Patyk, Z.: Two fission modes of the heavy fermium isotopes. Nucl. Phys. A491, 281 (1989).10.1016/0375-9474(89)90703-3Suche in Google Scholar
82. Ichikawa, T., Iwamoto, A., Möller, P.: Origin of the narrow, single peak in the fission-fragment mass distribution for 258Fm. Phys. Rev. C 79, 014305 (2009).10.1103/PhysRevC.79.014305Suche in Google Scholar
83. Staszczak, A., Baran, A., Dobaczewski, J., Nazarewicz, W.: Microscopic description of complex nuclear decay: multimodal fission. Phys. Rev. C 80, 014309 (2009).10.1103/PhysRevC.80.014309Suche in Google Scholar
84. Nagame, Y., Nishinaka, I., Tsukada, K., Oura, Y., Ichikawa, S., Ikezoe, H., Zhao, Y. L., Sueki, K., Nakahara, H., Tanikawa, M., Ohtsuki, T., Kudo, H., Hamajima, Y., Takamiya, K., Chung, Y. H.: Two deformation paths in proton-induced fission of 232Th. Phys. Lett. B387, 26 (1996).10.1016/0370-2693(96)01027-1Suche in Google Scholar
85. Ohtsuki, T., Nagame, Y., Nakahara, H.: Bimodal nature of nuclear fission. In: Greiner, W., Gupta, R. J. (Eds.), Heavy Elements and Related New Phenomena Vol. 1 (1999), World Scientific, Singapore, p. 507–535.10.1142/9789812816634_0014Suche in Google Scholar
86. Nagame, Y., Nakahara, H., Two-mode fission – Experimental verification and characterization of two fission-modes. Radiochim. Acta 100, 605 (2012).10.1524/ract.2012.1968Suche in Google Scholar
87. Möller, P., Madland, D. G., Sierk, A. J., Iwamoto, A.: Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. Nature 409, 785 (2001).10.1038/35057204Suche in Google Scholar
88. Zhao, Y. L., Nishinaka, I., Nagame, Y., Tanikawa, M., Tsukada, K., Ichikawa, S., Sueki, K., Oura, Y., Ikezoe, H., Mitsuoka, S., Kudo. H., Ohtsuki, T., Nakahara, H.: Symmetric and asymmetric scission properties- Identical shape elongations of fissioning nuclei. Phys. Rev. Lett. 82, 3408 (1999).10.1103/PhysRevLett.82.3408Suche in Google Scholar
89. Zhao, Y. L., Nagame, Y., Nishinaka, I., Sueki, K., Nakahara, H.: Degree of deformation at scission and correlated fission properties of atomic nuclei. Phys. Rev. C 62, 014612 (2000).10.1103/PhysRevC.62.014612Suche in Google Scholar
90. Wilkins, B. D., Steinberg, E. P., Chasman, R. R.: Scission-point model of nuclear fission based on deformed-shell effects. Phys. Rev. C 14, 1832 (1976).10.1103/PhysRevC.14.1832Suche in Google Scholar
91. Dematte, L., Wagemans, C., Barthelemy, R., D’hondt, P., Deruytter, A.: Fragments’ mass and energy characteristics in the spontaneous fission of 236Pu, 238Pu, 240Pu, 242Pu, and 244Pu. Nucl. Phys. A 617, 331 (1997).10.1016/S0375-9474(97)00032-8Suche in Google Scholar
92. Brosa, U., Grossmann, S., Müller, A.: Nuclear scission. Phys. Rep. 197, 167 (1990).10.1016/0370-1573(90)90114-HSuche in Google Scholar
93. Randrup, J., Möller, P.: Brownian shape motion on five-dimensional potential-energy surfaces: Nuclear fission-fragment mass distribution. Phys. Rev. Lett. 106, 132503 (2011).10.1103/PhysRevLett.106.132503Suche in Google Scholar PubMed
94. Randrup, J., Möller, P., Sierk, A. J.: Fission-fragment mass distributions from strongly damped shape evolution. Phys. Rev. C 84, 034613 (2011).10.1103/PhysRevC.84.034613Suche in Google Scholar
95. Möller, P., Randrup, J.: Calculated fission-fragment yield systematics in the region 74≤Z≤94 and 90≤N≤150. Phys. Rev. C 91, 044316 (2015).10.1103/PhysRevC.91.044316Suche in Google Scholar
96. Worden, E. F., Blaise, J., Fred, M., Trautmann, N., Wyart, J.-F.: Spectra and electronic structures of free actinide atoms and ions. In: Morss, L. R., Edelstein, N. M., Fuger, J., Katz, J. J. (Eds.), 3rd Ed., The Chemistry of the Actinide and Transactinide Elements (2006), Vol. 3, Chap. 16, Springer, Dordrecht, p. 1836–1892.10.1007/1-4020-3598-5_16Suche in Google Scholar
97. Pershina, V.: Theoretical Chemistry of the Heaviest Elements. In: Schädel, M., Shaughnessy, D. (Eds.), 2nd Ed. The Chemistry of Superheavy Elements (2014), Springer, Heidelberg, p. 135–239.10.1007/978-3-642-37466-1_3Suche in Google Scholar
98. Hertel, G. R.: Surface Ionization. II. The first ionization potential of uranium. J. Chem. Phys. 47, 335 (1967).10.1063/1.1711871Suche in Google Scholar
99. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta Part B 52, 717 (1997).10.1016/S0584-8547(96)01670-9Suche in Google Scholar
100. Peterson, J. R., Erdmann, N., Nunnemann, M., Eberhardt, K., Huber, G., Kratz, J. V., Passler, G., Stetzer, O., Thörle, P., Trautmann, N., Waldek, A.: Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS), J. Alloys Compd. 271-273, 876 (1998).10.1016/S0925-8388(98)00238-2Suche in Google Scholar
101. Wendt, K., Gottwald, T., Mattolat, C., Raeder, S.: Ionization potentials of the lanthanides and actinides – towards atomic spectroscopy of super-heavy elements. Hyp. Int. 227, 55 (2014).10.1007/s10751-014-1041-8Suche in Google Scholar
102. Sato, T. K., Asai, M., Borshevsky, A., Stora, T., Sato, N., Kaneya, Y., Tsukada, K., Düllmann, Ch. E., Eberhardt, K., Eliav, E., Ichikawa, S., Kaldor, U., Kratz, J. V., Miyashita, S., Nagame, Y., Ooe, K., Osa, A., Renisch, D., Runke, J., Schädel, M., Thörle-Pospiech, P., Toyoshima, A., Trautmann, N., Measurement of the first ionization potential of lawrencium, element 103. Nature 520, 209 (2015).10.1038/nature14342Suche in Google Scholar PubMed
103. Brewer, L.: Energies of the electronic configurations of the lanthanide and actinide neutral atoms. J. Opt. Soc. Am. 61, 1101 (1971).10.1364/JOSA.61.001101Suche in Google Scholar
104. Desclaux, J.-P., Fricke, B.: Relativistic prediction of the ground state of atomic lawrencium. J. Physique 41, 943 (1980).10.1051/jphys:01980004109094300Suche in Google Scholar
105. Sato, T. K., Sato, N., Asai, M., Tsukada, K., Toyoshima, A., Ooe, K., Miyashita, S., Schädel, M., Kaneya, Y., Nagame, Y., Osa, A., Ichikawa, S., Storal, T., Kratz, J. V.: First successful ionization of Lr (Z=103) by a surface-ionization technique. Rev. Sci. Instrum. 84, 023304 (2013).10.1063/1.4789772Suche in Google Scholar PubMed
106. Sato, T. K., Asai, M., Borschevsky, A., Beerwerth, R., Kaneya, Y., Makii, H., Mitsukai, A., Nagame, Y., Osa, A., Toyoshima, A., Tsukada, K., Sakama, M., Takeda, S., Ooe, K., Sato, D., Shigekawa, Y., Ichikawa, S., Düllmann, Ch. E., Grund, J., Renisch, D., Kratz, J. V., Schädel, M., Eliav, E., Kaldor, U., Fritzsche, S., Stora, T.: The first ionization potentials of Fm, Md, No, and Lr: Verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609 (2018).10.1021/jacs.8b09068Suche in Google Scholar PubMed
107. Jansen, W.: The position of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. Found. Chem. 17, 23 (2015).10.1021/ed059p634Suche in Google Scholar
108. Scerri, E.: Which elements belong in group 3 of the periodic table? Chem. Int. 38, 22 (2016).10.1515/ci-2016-0213Suche in Google Scholar
109. Backe, H., Lauth, W., Block, M., Laatiaoui, M.: Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492 (2015).10.1016/j.nuclphysa.2015.07.002Suche in Google Scholar
110. Laatiaoui, M., Backe, H., Block, M., Heßberger, F. P., Kunz, P., Lautenschläger, F., Lauth, W., Sewtz, M., Walther, T.: On laser spectroscopy of the element nobelium (Z=102). Eur. Phys. J. D 68, 71 (2014).10.1140/epjd/e2014-40617-6Suche in Google Scholar
111. Laatiaoui, M., Lauth, W., Backe, H., Block, M., Ackermann, D., Cheal, B., Chhetri, P., Düllmann, Ch. E., Van Duppen, P., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Lautenschläger, F., Mistry, A. K., Raeder, S., Ramirez, E. M., Walther, T., Wraith, C., Yakushev, A.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495 (2016).10.1038/nature19345Suche in Google Scholar PubMed
112. Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Droese, C., Düllmann, Ch. E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. K., Raeder, S., Van Duppen, P., Walther, Th., Yakushev, A., Zhang, Z.: Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 120, 3003-1 (2018).10.1103/PhysRevLett.120.263003Suche in Google Scholar PubMed
113. Albers, R. D.: An expanding view of plutonium. Nature 410, 759 (2001).10.1038/35071205Suche in Google Scholar PubMed
114. Kratz, J. V., Lieser, K. H.: Nuclear and Radiochemistry, Vol. 2, Wiley-VCH, Weinheim, Germany (2013), p. 618.10.1002/9783527653331Suche in Google Scholar
115. Benedict, U., Holzapfel, W. B.: High-pressure studies – structural aspects. In: Gschneidner, Jr., K. A., Eyring, L., Lander, G. H., Choppin, G. R. (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 17 – Lanthanides/Actinides: Physics – I (1993), Elsevier Science Publishers, Amsterdam, p. 245–300.10.1016/S0168-1273(05)80030-3Suche in Google Scholar
116. Savrasov, S. Y., Kotliar, G., Abrahams, E.: Correlated electrons in d-plutonium within a dynamical mean-field picture. Nature 410, 793 (2001).10.1038/35071035Suche in Google Scholar PubMed
117. Hulet, E. K., Lougheed, R. W., Brady, J. D., Stone, R. E., Coops, M. S.: Mendelevium: divalency and other chemical properties. Science 158, 486 (1967).10.1126/science.158.3800.486Suche in Google Scholar
118. Maly, J., Cunningham, B. B.: The amalgamation behavior of heavy elements. 2. Dipositive state of mendelevium. Inorg. Nucl. Chem. Lett. 3, 445 (1967).10.1016/0020-1650(67)80103-XSuche in Google Scholar
119. Samhoun, K., David, F. Hahn, R. L., O’Kelley, G. D., Tarrant, J. R., Hobart, D. E.: Electrochemical study of mendelevium in aqueous solution: no evidence for monovalent ions. J. Inorg. Nucl. Chem. 41, 1749 (1979).10.1016/0022-1902(79)80117-7Suche in Google Scholar
120. Guseva, L. I., Tikhomirova, G. S., Buklanov, G. V., Phar, Z. Z., Lebedev, I. A., Katargin, N. V., Myasoedov, B. F.: Isolation and ion exchanging behavior of mendelevium (II). J. Radioanal. Nucl. Chem., Lett. 117, 205 (1987).10.1007/BF02165793Suche in Google Scholar
121. Toyoshima, A., Li, Z. J., Asai, M., Sato, N., Sato, T. K., Kikuchi, T., Kaneya, Y., Kitatsuji, Y., Tsukada, K., Nagame, Y., Schädel, M., Ooe, K., Kasamatsu, Y. Shinohara, A., Haba, H., Even, J.: Measurement of Md3+/Md2+ reduction potential studied with flow electrolytic chromatography. Inorg. Chem. 52, 12311 (2013).10.1021/ic401571hSuche in Google Scholar
122. Hoffman, D. C., Henderson, R. A., Gregorich, K. E., Bennett, D. A., Chasteler, R. M., Gannett, C. M., Hall, H. L., Lee, D., Nurmia, M. J., Cai, S., Agarwal, R., Charlop, A. W., Chu, Y. Y., Seaborg, G. T., Silva, R. J.: Atom-at-a-time radiochemical separations of the heaviest elements: lawrencium chemistry. J. Radioanal. Nucl. Chem. 124, 135 (1988).10.2172/6558297Suche in Google Scholar
123. Scherer, U. W., Kratz, J. V., Schädel, M., Brüchle, W., Gregorich, K. E., Henderson, R. A., Lee, D., Nurmia, M., Hoffman, D. C.: Lawrencium chemistry: No evidence for oxidation states lower than 3+ in aqueous solution. Inorg. Chim. Acta 146, 249 (1988).10.1016/S0020-1693(00)80616-7Suche in Google Scholar
124. Maly, J., Sikkeland, T., Silva, R., Ghiorso, A.: Nobelium: tracer chemistry of the divalent and trivalent ions. Science 160, 1114 (1968).10.1126/science.160.3832.1114Suche in Google Scholar
125. Silva, R. J., Sikkeland, T., Nurmia, M., Ghiorso, A., Hulet, E. K.: Determination of the No (II) – No (III) potential from tracer experiments. J. Inorg. Nucl. Chem. 31, 3405 (1969).10.1016/0022-1902(69)80323-4Suche in Google Scholar
126. Bilewicz, A.: The ionic radius of No3+. J. Nucl. Radiochem. Sci. 3, 147 (2002).10.14494/jnrs2000.3.147Suche in Google Scholar
127. Toyoshima, A., Kasamatsu, Y., Tsukada, K. Asai, M., Kitatsuji, Y., Ishii, Y., Toume, H., Nishinaka, I., Haba, H., Ooe, K., Sato, W., Shinohara, A., Akiyama, K., Nagame, Y.: Oxidation of element 102, nobelium, with flow electric column chromatography on an atom-at-a-time scale. J. Am. Chem. Soc. 131, 9180 (2009).10.1021/ja9030038Suche in Google Scholar
128. Schädel, M., Brüchle, W., Jäger, E., Schimpf, E., Kratz, J. V., Scherer, U. W., Zimmermann, H. P.: ARCA II – A new apparatus for fast, repetitive HPLC separations. Radiochim. Acta 48, 171 (1989).10.1524/ract.1989.48.34.171Suche in Google Scholar
129. Phillips, C. S. G., Williams, R. J. P.: Inorganis Chemistry, Vol. 2. Oxford Unversity Press, London (1966), p. 58.Suche in Google Scholar
130. Silva, R. J., McDowell, W. J., Keller, O. L., Tarrant J. R.: Comparative solution chemistry, ionic radius, and single ion hydration energy of nobelium. Inorg. Chem. 13, 2233 (1974).10.1021/ic50139a034Suche in Google Scholar
131. Toyoshima, A., Kasamatsu, Y., Kitatsuji, Y., Tsukada, K., Haba, H., Shinohara, A., Nagame, Y.: Development of an electrochemistry apparatus for the heaviest elements. Radiochim. Acta 96, 323 (2008).10.1524/ract.2008.1498Suche in Google Scholar
132. Nagame, Y., Tsukada, K., Asai, M., Toyoshima, A., Akiyama, K., Ishii, Y., Kaneko-Sato, T., Hirata, M., Nishinaka, I., Ichikawa, S., Haba, H., Enomoto, S., Matsuo, K., Saika, D., Kitamoto, Y., Hasegawa, H., Tani, Y., Sato, W., Shinohara, A., Ito, M., Saito, J., Goto, S., Kudo, H., Kikunaga, H., Kinoshita, N., Yokoyama, A., Sueki, K., Oura, Y., Nakahara, H., Sakama, M., Schädel, M., Brüchle, W., Kratz, J. V.: Chemical studies on rutherfordium (Rf) at JAERI. Radiochim. Acta 93, 519 (2005).10.1524/ract.2005.93.9-10.519Suche in Google Scholar
133. Brüchle, W., Schädel, M., Scherer, U. W., Kratz, J. V., Gregorich, K. E., Lee, D., Nurmia, M., Chasteler, R. M., Hall, H. L., Henderson, R. A., Hoffman, D. C.: The hydration enthalpies of Md3+ and Lr3+. Inorg. Chim. Acta 146, 267 (1988).10.1016/S0020-1693(00)80619-2Suche in Google Scholar
134. Templeton, D. H., Dauben, C. H.: Lattice parameters of some rare earth compounds and a set of crystal radii. J. Am. Chem. Soc. 76, 5237 (1954).10.1021/ja01649a087Suche in Google Scholar
135. D’Angelo, P., Martelli, F., Spezia, R., Filipponi, A., Denecke, A.: Hydration properties and ionic radii of actinide (III) ion in aqueous solution. Inorg. Chem. 52, 10318 (2013).10.1021/ic400678uSuche in Google Scholar PubMed
136. Kratz, J. V.: The impact of the properties of the heaviest elements on the chemical and physical sciences. Radiochim. Acta 100, 569 (2012).10.1524/ract.2012.1963Suche in Google Scholar
137. Silver, M. A., Cary, S. K., Johnson, J. A., Baumbach, R. E., Arico, A. A., Luckey, M., Urban, M., Wang, J. C., Polinski, M. J., Chemey, A., Liu G., Chen, K.-W., Van Cleve, S. M., Marsh, M. L., Eaton, T. M., van de Burgt, L. J., Gray, A. L., Hobart, D. E., Hanson, K., Maron, L., Gendron, F., Autschbach, J., Speldrich, M., Kögerler, P., Yang, P., Braley, J., Albrecht-Schmitt, T. E.: Characterization of berkelium(III) dipicolinate and borate compounds in solution and the solid state. Science 353, 6302 (2016).10.1126/science.aaf3762Suche in Google Scholar PubMed
138. Deblonde, G. J.-P., Struzbecher-Hoehne, M., Rupert, P. B., An, D. D., Llly, M.-C., Ralston, C. Y., Brabec, J., de Jong, W. A., Strong, R. K., Abergel, R.: Chelation and stabilization of berkelium in oxidation state +IV. Nature Chem. 9, 843 (2017).10.1038/nchem.2759Suche in Google Scholar PubMed
139. Ball, P.: On the edge of the periodic table. Nature 565, 552 (2019).10.1038/d41586-019-00285-9Suche in Google Scholar PubMed
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications