Home Physical Sciences What do we know about actinides-proteins interactions?
Article
Licensed
Unlicensed Requires Authentication

What do we know about actinides-proteins interactions?

  • Gaëlle Creff EMAIL logo , Cyril Zurita , Aurélie Jeanson , Georges Carle , Claude Vidaud and Christophe Den Auwer
Published/Copyright: July 18, 2019

Abstract

Since the early 40s when the first research related to the development of the atomic bomb began for the Manhattan Project, actinides (An) and their association with the use of nuclear energy for civil applications, such as in the generation of electricity, have been a constant source of interest and fear. In 1962, the first Society of Toxicology (SOT), led by H. Hodge, was established at the University of Rochester (USA). It was commissioned as part of the Manhattan Project to assess the impact of nuclear weapons production on workers’ health. As a result of this initiative, the retention and excretion rates of radioactive heavy metals, their physiological impact in the event of acute exposure and their main biological targets were assessed. In this context, the scientific community began to focus on the role of proteins in the transportation and in vivo accumulation of An. The first studies focused on the identification of these proteins. Thereafter, the continuous development of physico-chemical characterization techniques has made it possible to go further and specify the modes of interaction with proteins from both a thermodynamic and structural point of view, as well as from the point of view of their biological activity. This article reviews the work performed in this area since the Manhattan Project. It is divided into three parts: first, the identification of the most affine proteins; second, the study of the affinity and structure of protein-An complexes; and third, the impact of actinide ligation on protein conformation and function.

Acknowledgements

The authors would like to acknowledge the CEA Nuclear Toxicology program for their constant support and funding over the past 10 years. This work was also supported by the Agence Nationale pour la Recherche under the TURBO project (ANR-16-CE34-0003-01).

References

1. Morrow, P. E., Witschi, H., Vore, M., Hakkinen, P. E., Mac Gregor, J., Anders, M. W., Willhite, C.: Harold Carpenter Hodge (1904–1990). Toxicol. Sci. 53, 157 (2000).10.1093/toxsci/53.2.157Search in Google Scholar

2. Durbin, P.: Actinides in animals and man. In: Actinides Full Review, 4th edition, Springer, Netherlands (2010).Search in Google Scholar

3. IRCP: Report of Committee II on Permissible Dose for Internal Radiation. Health Phys. 3, 1 (1959).Search in Google Scholar

4. ICRP: Limits for intakes of radionuclides by workers, ICRP Pub. 30, Pergamon Press, Oxford (1979).Search in Google Scholar

5. ICRP: Limits for intakes of radionuclides by workers, ICRP Pub. 30, Pergamon Press, Oxford (1980).Search in Google Scholar

6. ICRP: The metabolism of plutonium and related elements. ICRP Pub. 48, Pergamon Press, Oxford (1986).Search in Google Scholar

7. ICRP: Age-dependent doses to members of the public from intake of radio-nuclides: Part 2 ingestion dose coefficients. ICRP Pub. 67, Pergamon Press, Oxford (1993).Search in Google Scholar

8. ICRP: Age-dependent doses to members of the public from intake of radio-nuclides: Part 3. Ingestion dose coefficients, Pergamon Press, Oxford (1995).Search in Google Scholar

9. Choppin, G. R.: Comparison of the solution chemistry of the actinides and lanthanides. J. Less Common Metals 93, 323 (1983).10.1016/0022-5088(83)90177-7Search in Google Scholar

10. Vidaud, C. Bourgeois, D., Meyer, D.: Bone as target organ for metals: the case of f-elements. Chem. Res. Toxicol 25, 1161 (2012).10.1021/tx300064mSearch in Google Scholar PubMed

11. Hamilton, J. G.: Medical and Health Physics Quarterly Report UCRL-41, 15, University of California Radiation Laboratory (1947).Search in Google Scholar

12. Durbin, P. W., Scott, A., Hamilton, J. A.: Metabolic characteristics within a chemical family. Univ. Calif. Pub. Pharmecol. 3, 1 (1957).10.1097/00004032-195907000-00001Search in Google Scholar PubMed

13. Hamilton, J. G.: Medical and Health Physics Quarterly Report UCRL-193, 13, University of California Radiation Laboratory (1948).Search in Google Scholar

14. Durbin, P. W., Jeung, N., Bucher, J. J.: Initial distribution of neptunium-237 in a monkey, in Division of Biology and Medicine Annual Report, Lawrence Berkeley Laboratory, LBL-22300, 78 (1987).Search in Google Scholar

15. Ansoborlo, E., Prat, O., Moisy, P., Den Auwer, C., Guilbaud, P., Carriere, M., Gouget, B., Duffield, J., Doizi, D., Vercouter, T., Moulin, C., Moulin, V.: Actinide speciation in relation to biological processes. Biochimie 88, 1605 (2006).10.1016/j.biochi.2006.06.011Search in Google Scholar PubMed

16. IRCP. Individual monitoring for internal exposure of workers, ICRP Pub. 78, Elsevier, Oxford (1998).Search in Google Scholar

17. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., Phillips, D. C.: A three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662 (1958).10.1038/181662a0Search in Google Scholar PubMed

18. Degtyarenko, K.: Metalloproteins. In: L. B. Jorde, P. F. Little, M. J. Dunn, S. Subramaniam (Eds.), In Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics, John Wiley and Sons, Hoboken, NJ, USA (2005).10.1002/047001153X.g306204Search in Google Scholar

19. Appenroth, K. J.: Definition of “Heavy Metals” and their role in biological systems. In: Soil Heavy Metals. Soil Biology, Springer, Berlin, Heidelberg (2010).10.1007/978-3-642-02436-8_2Search in Google Scholar

20. Lemire, J. A., Harrison, J. J., Turner, R. J.: Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371 (2013).10.1038/nrmicro3028Search in Google Scholar PubMed

21. Tamas, M. J., Sharma, S. K., Ibstedt, S., Jacobson, T., Christen, P.: Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4, 252 (2014).10.3390/biom4010252Search in Google Scholar PubMed PubMed Central

22. Tiselius, A.: A new apparatus for electrophoretic analysis of colloidal mixtures. Trans. Faraday Soc. 33, 524 (1937).10.4159/harvard.9780674366701.c24Search in Google Scholar

23. Muntz, J. A., Barron, E. S. G., MDDC 1268, United States Atomic Energy Commission, Argonne National Laboratory, Argonne, IL (1947).Search in Google Scholar

24. Beliayev, Y. A., Data on the receptors of irradiated areas of the human body during radiotherapy (article in Russian). Med. Radiol. Mosk 4, 45–51 (1959).Search in Google Scholar

25. Boocock, G., Popplewell, D. S.: Distribution of plutonium in serum proteins following intravenous injection into rats. Nature 208, 282 (1965).10.1038/208282a0Search in Google Scholar PubMed

26. Bauer, N., Panak, P. J.: Influence of carbonate on the complexation of Cm (III) with human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). New J. Chem. 39, 1375 (2015).10.1039/C4NJ01877JSearch in Google Scholar

27. Turner, G. A., Taylor, D. M.: The transport of plutonium, americium and curium in the blood of rats. Phys. Med. Biol. 13, 535 (1968).10.1088/0031-9155/13/4/304Search in Google Scholar

28. Taylor, D. M., Farrow, L. C.: Identification of transferrin as the main binding site for protactinium in rat blood serum. Nucl. Med. Biol. 14, 27 (1987).10.1016/0883-2897(87)90157-7Search in Google Scholar

29. Taylor, D. M.: The bioinorganic chemistry of actinides in blood. J. Alloys Compd. 271, 6 (1998).10.1016/S0925-8388(98)00014-0Search in Google Scholar

30. Fried, S., Hindman, J. C.: The +4 oxidation state of protactinium in aqueous solution. J. Am. Chem. Soc. 76, 4863 (1954).10.1021/ja01648a030Search in Google Scholar

31. Kihara, S., Yoshida, Z., Apyagi, H., Maeda, K., Shirai, O., Kitatsuji, Y., Yoshida, Y.: A critical evaluation of the redox properties of uranium, neptunium and plutonium ions in acidic aqueous solutions. Pure Appl. Chem. 71, 1771 (1999).10.1351/pac199971091771Search in Google Scholar

32. Wirth, W., Taylor, D. M., Duffield, J.: Identification of transferrin as the principal neptunium-binding protein in the blood serum of rats. Int. J. Nucl. Med. Biol. 12, 327 (1985).10.1016/0047-0740(85)90188-3Search in Google Scholar

33. Duffield, J. R., Taylor, D. M., Proctor, S. A.: The binding of plutonium to transferrin in the presence of tri-n-butyl phosphate or nitrate and its release by diethylenetriaminepenta-acetate and the tetrameric catechoylamide ligand LICAMC(C). Int. J. Nucl. Med. Biol. 12, 483 (1986).10.1016/S0047-0740(86)80012-2Search in Google Scholar

34. Cooper, J. R., Gowing, H. S.: The binding of americium and curium to human serum proteins. Int. J. Nucl. Med. Biol. 40, 569 (1981).10.1080/09553008114551541Search in Google Scholar PubMed

35. Abergel, R. J., De Jong, W. A., Deblonde, G. J.-P., Dau, P. D., Captain, I., Eaton, T. M., Jian, J., Van Stipdonk, M. J., Martens, J., Berden, G., Oomens, J., Gibson, J. K.: Cleaving off uranyl oxygens through chelation: a mechanistic study in the gas phase. Inorg. Chem. 56, 12930 (2017).10.1021/acs.inorgchem.7b01720Search in Google Scholar PubMed

36. Basset, C., Averseng, O., Ferron, P.-J., Richaud, N., Hageg̀e, A., Pible, O., Vidaud, C.: Revision of the biodistribution of uranyl in serum: is fetuin-A the major protein target? Chem. Res. Toxicol. 26, 645 (2013).10.1021/tx400048uSearch in Google Scholar PubMed

37. Vidaud, C., Dedieu, A., Basset, C., Plantevin, S., Dany, I., Pible, O., Quéméneur, E.: Screening of human serum proteins for uranium binding. Chem. Res. Toxicol. 18, 946 (2005).10.1021/tx050038vSearch in Google Scholar PubMed

38. Bourgeois, D., Burt-Pichat, B., Le Goff, X., Garrevoet, J., Tack, P., Falkenberg, G., Van Hoorebeke, L., Vincze, L., Denecke, M., Meyer, D., Vidaud, C., Boivin, G.: Micro-distribution of uranium in bone after contamination: new insight into its mechanism of accumulation into bone tissue. Anal. Bioanal. Chem. 22, 6619 (2015).10.1007/s00216-015-8835-7Search in Google Scholar PubMed

39. Huynh, T.-N. S., Bourgeois, D., Basset, C., Vidaud, C., Hagège, A.: Assessment of CE-ICP/MS hyphenation for the study of uranyl/protein interactions. Electrophoresis 36, 1374 (2015).10.1002/elps.201400471Search in Google Scholar PubMed

40. Pible, O., Guilbaud, P., Pellequer, J.-L., Vidaud, C., Quéméneur, E.: Structural insights into protein–uranyl interaction: towards an in silico detection method. Biochimie 88, 1631 (2006).10.1016/j.biochi.2006.05.015Search in Google Scholar PubMed

41. Pible, O., Vidaud, C., Plantevin, S., Pellequer, J.-L., Quéméneur, E.: Predicting the disruption by UO22+ of a protein-ligand interaction. Protein Sci. 19, 2219 (2010).10.1002/pro.501Search in Google Scholar PubMed PubMed Central

42. Zhou, L., Bosscher, M., Zhang, C., Özçubukçu, S., Zhang, L., Zhang, W., Li, C. J., Liu, J., Jensen, M. P., Lai, L., He, C.: A protein engineered to bind uranyl selectively and with femtomolar affinity. Nat. Chem. 6, 236 (2014).10.1038/nchem.1856Search in Google Scholar PubMed

43. Milgram, S., Carrière, M., Thiebault, C., Malaval, L., Gouget, B.: Cytotoxic and phenotypic effects of uranium and lead on osteoblastic cells are highly dependent on metal speciation. Toxicology 250, 62 (2008).10.1016/j.tox.2008.06.003Search in Google Scholar PubMed

44. Prat, O., Ansoborlo, E., Sage, N., Cavadore, D., Lecoix, J., Kurttio, P., Quéméneur, E.: From cell to man: evaluation of osteopontin as a possible biomarker of uranium exposure. Environ. Int. 37, 657 (2011).10.1016/j.envint.2011.01.004Search in Google Scholar PubMed

45. Safi, S., Creff, G., Jeanson, A., Qi, L., Basset, C., Roques, J., Solari, P.-L., Simoni, E., Vidaud, C., Den Auwer, C.: Osteopontin: a uranium phosphorylated binding-site characterization. Chem. Eur. J. 19, 11261 (2013).10.1002/chem.201300989Search in Google Scholar PubMed

46. Qi, L., Basset, C., Averseng, O., Queḿeneur, E., Hageg̀e, A., Vidaud, C.: Characterization of UO2(2+) binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones. Metallomics 6, 166 (2014).10.1039/C3MT00269ASearch in Google Scholar

47. Huynh, T.-N. S., Vidaud, C., Hagège, A.: Investigation of uranium interactions with calcium phosphate-binding proteins using ICP/MS and CE-ICP/MS. Metallomics 8, 1185 (2016).10.1039/C6MT00147ESearch in Google Scholar

48. Chevari, S., Likhner, D.: Complex formation of natural uranium in the blood. Med. Radiol. 13, 53 (1968).Search in Google Scholar

49. Cooper, J. R, Stradling, G. N., Smith, H., Ham, S. E.: The behaviour of uranium-233 oxide and uranyl-233 nitrate in rats. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 41, 421 (1982).10.1080/09553008214550461Search in Google Scholar

50. Carrière, M., Avoscan, L., Collins, R., Carrot, F., Khodja, H., Ansoborlo, E., Gouget, B.: Influence of uranium speciation on normal rat kidney (NRK-52E) proximal cell cytotoxicity. Chem. Res. Toxicol. 17, 446 (2004).10.1021/tx034224hSearch in Google Scholar

51. Taulan, M., Paquet, F., Argiles, A., Demaille, J., Romey, M.-C.: Comprehensive analysis of the renal transcriptional response to acute uranyl nitrate exposure. Genomics 7, 2 (2006).10.1186/1471-2164-7-2Search in Google Scholar

52. Prat, O., Berenguer, F., Malard, V., Quemeneur, V.: Toxico-genomics of uranium-induced cell stress, CEA, Paris, France (2006).Search in Google Scholar

53. Basset, C., Dedieu, A., Guérin, P., Quéméneur, E., Meyer, D., Vidaud, C.: Specific capture of uranyl protein targets by metal affinity chromatography. J. Chromatogr. A 1185, 233 (2008).10.1016/j.chroma.2008.01.081Search in Google Scholar

54. Dedieu, A., Bérenguer, F., Basset, C., Prat, O., Quéméneur, E., Pible, O., Vidaud, C.: Identification of uranyl binding proteins from human kidney-2 cell extracts by immobilized uranyl affinity chromatography and mass spectrometry. J. Chromatogr. A 1216, 5365 (2009).10.1016/j.chroma.2009.05.023Search in Google Scholar

55. Frelon, S., Guipaud, O., Mounicou, S., Lobinski, R., Delissen, O., Paquet, F.: In vivo screening of proteins likely to bind uranium in exposed rat kidney. Radiochim. Acta 97, 367 (2009).10.1524/ract.2009.1619Search in Google Scholar

56. Taylor, D. M.: The biodistribution and toxicity of plutonium, americium and neptunium. Sci. Total Environ. 83, 217 (1989).10.1016/0048-9697(89)90094-6Search in Google Scholar

57. Aryal, B. P., Gorman-Lewis, D., Paunesku, T., Wilson, R. E., Lai, B., Vogt, S., Woloschak, G. E., Jensen, M. P.: Plutonium uptake and distribution in mammalian cells: molecular vs. polymeric plutonium. Int. J. Radiat. Biol. 87, 1023 (2011).10.3109/09553002.2011.584941Search in Google Scholar PubMed PubMed Central

58. Aryal, B. P., Paunesku, T., Woloschak, G. E., He, C., Jensen, M. P.: A proteomic approach to identification of plutonium-binding proteins in mammalian cells. J. Proteomics 75, 1505 (2012).10.1016/j.jprot.2011.11.023Search in Google Scholar PubMed PubMed Central

59. Seeger, P. A., Rokop, S. E., Palmer, P. D., Henderson, S. J., Hobart, D. E., Trewhella, J.: Neutron resonance scattering shows specific binding of plutonium to the calcium-binding sites of the protein calmodulin and yields precise distance information. J. Am. Chem. Soc. 119, 5118 (1997).10.1021/ja9633124Search in Google Scholar

60. Le Clainche, L., Vita, C.: Selective binding of uranyl cation by a novel calmodulin peptide. Environ. Chem. Lett. 4, 45 (2006).10.1007/s10311-005-0033-ySearch in Google Scholar

61. Pardoux, R., Sauge-Merle, S., Lemaire, D., Delangle, P., Guilloreau, L., Adriano, J.-M., Berthomieu, C.: Modulating uranium binding affinity in engineered calmodulin EF-hand peptides: effect of phosphorylation. PLoS One 7, 41922 (2012).10.1371/journal.pone.0041922Search in Google Scholar PubMed PubMed Central

62. Creff, G., Safi, S., Roques, J., Michel, H., Jeanson, A., Solari, P.-L., Basset, C., Simoni, E., Vidaud, C., Den Auwer, C.: Actinide (IV) deposits on bone: potential role of the osteopontin–thorium complex. Inorg. Chem. 55, 29 (2016).10.1021/acs.inorgchem.5b02349Search in Google Scholar PubMed

63. Eb-Levadoux, Y., Frelon, S., Simon, O., Arnaudguilhem, C., Lobinski, R., Mounicou, S.: In vivo identification of potential uranium protein targets in zebrafish ovaries after chronic waterborne exposure. Metallomics 9, 525 (2017).10.1039/C6MT00291ASearch in Google Scholar

64. Hartsock, W. J., Cohen, J. D., Segal, D. J.: Uranyl acetate as a direct inhibitor of DNA-binding proteins. Chem. Res. Toxicol. 20, 784 (2007).10.1021/tx600347kSearch in Google Scholar PubMed

65. Barkleit, A., Hennig, C., Ikeda-Ohno, A.: Interaction of uranium (VI) with α-amylase and its implication for enzyme activity. Chem. Res. Tox. 31, 1032 (2018).10.1021/acs.chemrestox.8b00106Search in Google Scholar PubMed

66. Barkleit, A., Heller, A., Ikeda-Ohno, A., Bernhard, G.: Interaction of europium and curium with alpha-amylase. Dalton Trans. 45, 8724 (2016).10.1039/C5DT04790KSearch in Google Scholar

67. Wilke, A., Barkleit, C., Stumpf, T., Ikeda-Ohno, A.: Speciation of the trivalent f-elements Eu (III) and Cm (III) in digestive media. J. Inorg. Biochem. 175, 248 (2017).10.1016/j.jinorgbio.2017.07.020Search in Google Scholar PubMed

68. Barkleit, A., Wilke, C., Heller, A., Stumpf, T., Ikeda-Ohno, A.: Trivalent f-elements in human saliva: a comprehensive speciation study by time-resolved laser-induced fluorescence spectroscopy and thermodynamic calculations. Dalton Trans. 46, 1593 (2017).10.1039/C6DT03726GSearch in Google Scholar PubMed

69. Malard, V., Prat, O., Darrouzet, E., Berenguer, F., Sage, N., Quemeneur, E.: Proteomic analysis of the response of human lung cells to uranium. Proteomics 5, 4568 (2005).10.1002/pmic.200402038Search in Google Scholar PubMed

70. Wan, D., Liao, L. F., Lin, Y. W., Thaung, K. S.: Impacts of uranyl ion on the structure and function of cytochrome b(5) His39Ser mutant. Adv. Mater. Res. 455, 1204 (2012).10.4028/www.scientific.net/AMR.455-456.1204Search in Google Scholar

71. Wan, D., Liao, L. F., Zhao, M. M., Wu, M. L., Wu, Y. M., Lin, Y. W.: Interactions of uranyl ion with cytochrome b(5) and its His39Ser variant as revealed by molecular simulation in combination with experimental methods. J. Mol. Model. 18, 1009 (2012).10.1007/s00894-011-1097-1Search in Google Scholar PubMed

72. Kumar, A., Ali, M., Pandey, B. N., Hassan, P. A., Mishra, K. P.: Role of membrane sialic acid and glycophorin protein in thorium induced aggregation and hemolysis of human erythrocytes. Biochimie 92, 869–879 (2010).10.1016/j.biochi.2010.03.008Search in Google Scholar PubMed

73. Van Horn, J. D., Huang, H.: Uranium(VI) bio-coordination chemistry from biochemical, solution and protein structural data. Coord. Chem. Rev. 250, 765 (2006).10.1016/j.ccr.2005.09.010Search in Google Scholar

74. Carugo, O. J.: Structural features of uranium-protein complexes. Inorg. Biochem. 189, 1 (2018).10.1016/j.jinorgbio.2018.08.014Search in Google Scholar PubMed

75. Princiotto, J. V., Zapolski, E. J.: Difference between the two iron-binding sites of transferrin. Nature 255, 87 (1975).10.1038/255087a0Search in Google Scholar PubMed

76. Yang, N., Zhang, H., Wang, M., Hao, Q., Sun, H.: Iron and bismuth bound human serum transferrin reveals a partially-opened conformation in the N-lobe. Sci. Rep. 2, 999 (2012).10.1038/srep00999Search in Google Scholar PubMed PubMed Central

77. Stevens, W., Bruenger, F. W., Stover, B.: In vivo studies on the interactions of PuIV with blood constituents. J. Radiat. Res. 33, 490 (1968).10.2307/3572406Search in Google Scholar

78. Duffield, J. R.: A spectroscopic study on the binding of plutonium (IV) and its chemical analogues to transferrin. Inorg. Chim. Acta 140, 365 (1987).10.1016/S0020-1693(00)81125-1Search in Google Scholar

79. Harris, W. R., Carrano, C. J., Pecoraro, V. L., Raymond, K. N.: Siderophilin metal coordination. 1. Complexation of thorium by transferrin: structure-function implications. J. Am. Chem. Soc. 103, 2231 (1981).10.1021/ja00399a016Search in Google Scholar

80. Den Auwer, C., Llorens, I., Moisy, P., Vidaud, C., Goudard, F., Barbot, C., Solari, P.-L., Funke, H.: Actinide uptake by transferrin and ferritin metalloproteins. Radiochim. Acta 93, 699 (2005).10.1524/ract.2005.93.11.699Search in Google Scholar

81. Jeanson, A., Ferrand, M., Funke, H., Henning, C., Moisy, P., Lorenzo, P.-L., Vidaud, C., Den Auwer, C.: The role of transferrin in actinide (IV) uptake: comparison with iron (III). Chem. Eur. J. 16, 1378 (2010).10.1002/chem.200901209Search in Google Scholar PubMed

82. Llorens, I., Den Auwer, C., Moisy, P. H., Ansoborlo, E., Vidaud, C., Funke, H.: Neptunium uptake by serum transferrin. FEBS J. 272, 1739 (2005).10.1111/j.1742-4658.2005.04603.xSearch in Google Scholar PubMed

83. Yule, L.: A Comparison of the Binding of Plutonium and Iron to transferrin and Citrate. Thesis, University of Wales, Cardiff, UK (1991).Search in Google Scholar

84. Sauge-Merle, S., Lemaire, D., Ewans, R. W., Berthomieu, C., Aupiais, J.: Revisiting binding of plutonium to transferrin by CE-ICP-MS. Dalton Trans. 46, 1389 (2017).10.1039/C6DT04336DSearch in Google Scholar PubMed

85. Brulfert, F., Aupiais, J.: Topological speciation of actinide–transferrin complexes by capillary isoelectric focusing coupled with inductively coupled plasma mass spectrometry: evidence of the non-closure of the lobes. Dalton Trans. 47, 9994 (2018).10.1039/C8DT01616JSearch in Google Scholar PubMed

86. Frausto da Silva, J. J. R., Williams, R. J. P., The biological chemistry of the elements, Oxford University Press, Oxford (1991).Search in Google Scholar

87. Luk, C. K.: Study of the nature of the metal-binding sites and estimate of the distance between the metal-binding sites in transferrin using trivalent lanthanide ions as fluorescent probes. Biochemistry 10, 2839 (1971).10.1021/bi00791a006Search in Google Scholar PubMed

88. Harris, S. R.: Binding constants for neodymium (III) and samarium (III) with human serum transferrin. Inorg. Chem. 25, 2041 (1986).10.1021/ic00232a026Search in Google Scholar

89. Unalkat, P., The use of europium and gadolinium as biochemical analogues of americium and curium respectively. Thesis, University of Wales, UK (1992).Search in Google Scholar

90. Bauer, N., Fröhlich, D. R., Panak, P. J.: Interaction of Cm (III) and Am (III) with human serum transferrin studied by time-resolved laser fluorescence and EXAFS spectroscopy. Dalton Trans. 43, 6689 (2014).10.1039/C3DT53371ASearch in Google Scholar

91. Bauer, N., Smith, V. C., Mac Gillivray, R. T. A., Panak, P. J.: Complexation of Cm (III) with the recombinant N-lobe of human serum transferrin studied by time-resolved laser fluorescence spectroscopy (TRLFS). Dalton Trans. 44, 1850 (2015).10.1039/C4DT03403ASearch in Google Scholar PubMed

92. Sturzbecher-Hoene, M., Goujon, C., Deblonde, G. J.-P., Mason, A. B., Abergel, R. J.: Sensitizing curium luminescence through an antenna protein to investigate biological actinide transport mechanisms. J. Am. Chem. Soc. 135, 2676 (2013).10.1021/ja310957fSearch in Google Scholar PubMed PubMed Central

93. Deblonde, G. J.-P., Sturzbecher-Hoehne, M., Rupert, P. B., An, D. D., Illy, M.-C., Ralston, C. Y., Brabec, J., De Jong, W. A., Strong, R. K., Abergel, R. J.: Chelation and stabilization of berkelium in oxidation state +IV. Nat. Chem. 9, 843 (2013).10.1038/nchem.2759Search in Google Scholar PubMed

94. Sauge-Merle, S., Brulfert, F., Pardoux, R., Solari, P. L., Lemaire, D., Safi, S., Guilbaud, P., Simoni, E., Merroun, M. L., Berthomieu, C.: Structural analysis of uranyl complexation by the EF-hand motif of calmodulin: effect of phosphorylation. Chem. Eur. J. 23, 15505 (2017).10.1002/chem.201703484Search in Google Scholar PubMed

95. Scapolan, S., Ansoborlo, E., Moulin, C., Madic, C.: Uranium (VI)-transferrin system studied by time-resolved laser-induced fluorescence. Rad. Protec. Dosim. 79, 505 (1998).10.1093/oxfordjournals.rpd.a032462Search in Google Scholar

96. Montavon, G., Apostolidis, C., Bruchertseifer, F., Repinc, U., Morgenstern, A.: Spectroscopic study of the interaction of U (VI) with transferrin and albumin for speciation of U (VI) under blood serum conditions. J. Inorg. Biochem. 103, 1609 (2009).10.1016/j.jinorgbio.2009.08.010Search in Google Scholar PubMed

97. Michon, J., Frelon, S., Garnier, C.: Determinations of uranium (VI) binding properties with some metalloproteins (transferrin, albumin, metallothionein and ferritin) by fluorescence quenching. J. Fluoresc. 20, 581 (2010).10.1007/s10895-009-0587-3Search in Google Scholar PubMed

98. Ali, M., Kumar, A., Kumar, M., Pandey, B. N.: The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes. Biochimie 123, 117 (2016).10.1016/j.biochi.2016.01.012Search in Google Scholar PubMed

99. Kumar, A., Ali, M., Ningthoujam, R., Gaikwad, P., Kumar, M., Nath, B. B., Pandey, B. N.: The interaction of actinide and lanthanide ions with hemoglobin and its relevance to human and environmental toxicology. J. Hazardous Mater. 307, 281 (2016).10.1016/j.jhazmat.2015.12.029Search in Google Scholar PubMed

100. Coppin, F., Michon, J., Garnier, C.: Fluorescence quenching determination of uranium (VI) binding properties by two functional proteins: acetylcholinesterase (AChE) and vitellogenin (Vtg). J. Fluoresc. 25, 569 (2015).10.1007/s10895-015-1536-ySearch in Google Scholar PubMed

101. Vidaud, C. Gourion-Arsiquaud, S., Rollin-Genetet, F., Torne-Celer, C., Plantevin, S., Pible, O., Berthomieu, C., Quéméneur, E.: Structural consequences of binding of UO22+ to apotransferrin: can this protein account for entry of uranium into human cells? Biochemistry 46, 2215 (2007).10.1021/bi061945hSearch in Google Scholar PubMed

102. Wang, M., Ding, W. J., Wang, D. Q.: Binding mechanism of uranyl to transferrin implicated by density functional theory study. RSC Adv. 7, 3667 (2017).10.1039/C6RA26109DSearch in Google Scholar

103. Benavides-Garcia, M. G., Balasubramanian, K.: Structural insights into the binding of uranyl with human serum protein apotransferrin structure and spectra of protein–uranyl interactions. Chem. Res. Toxicol. 22, 1613 (2009).10.1021/tx900184rSearch in Google Scholar PubMed

104. Racine, R., Moisy, P., Paquet, F., Métivier, H., Madic, C.: In vitro study of the interaction between neptunium ions and aposerumtransferrin by absorption spectrophotometry and ultrafiltration: the case of Np (V). Radiochim. Acta 91, 115 (2003).10.1524/ract.91.2.115.19987Search in Google Scholar

105. Durbin, P. W., Kullgreen, B., Xu, J., Raymond, K. N.: 237Np: Oxidation state in vivo and chelation by multidentate catecholate and hydroxypyridinonate ligands. Health Phys. 75, 34 (1998).10.1097/00004032-199807000-00007Search in Google Scholar PubMed

106. Le Clainche, L., Vita, C., Lichtfouse, E., Schwarzbauer, J., Robert, D. (Eds.) Environmental chemistry, Springer, Berlin, Heidelberg (2005).Search in Google Scholar

107. Brulfert, F., Safi, S., Jeanson, A., Martinez-Baez, E., Roques, J., Berthomieu, C., Solari, P.-L., Sauge-Merle, S., Simoni, E.: Structural environment and stability of the complexes formed between calmodulin and actinyl ions. Inorg. Chem. 55, 2728 (2016).10.1021/acs.inorgchem.5b02440Search in Google Scholar PubMed

108. Starck, M., Sisommay, N., Laporte, F. A., Oros, S., Lebrun, C., Delangle, P.: Preorganized peptide scaffolds as mimics of phosphorylated proteins binding sites with a high affinity for uranyl. Inorg. Chem. 54, 11557 (2015).10.1021/acs.inorgchem.5b02249Search in Google Scholar PubMed

109. Starck, M., Laporte, F. A., Oros, S., Sisommay, N., Gathu, V., Solari, P. L., Creff, G., Roques, J., Den Auwer, C., Lebrun, C., Delangle, P.: Cyclic phosphopeptides to rationalize the role of phosphoamino acids in uranyl binding to biological targets. Chem. Eur. J. 23, 5281 (2017).10.1002/chem.201605481Search in Google Scholar PubMed

110. Bourrachot, S., Brion, F., Pereira, S., Floriani, M., Camilleri, V., Cavalié, I., Palluel, O., Adam-Guillermin, C.: Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). Aquat. Toxicol. 154, 1 (2014).10.1016/j.aquatox.2014.04.018Search in Google Scholar PubMed

111. Li, B., Raff, J., Barkleit, A., Bernhard, G., Foerstendorf, H. J.: Complexation of U (VI) with highly phosphorylated protein, phosvitin: a vibrational spectroscopic approach Complexation of U (VI) with highly phosphorylated protein, phosvitin: a vibrational spectroscopic approach. Inorg. Biochem. 104, 718−725 (2010).10.1016/j.jinorgbio.2010.03.004Search in Google Scholar PubMed

112. Grosseman, G., Solution X-ray scattering studies of metalloproteins, Doctoral thesis (1992), University of Karlsruhe, Kernforschungszentrum Karlsruhe Report.Search in Google Scholar

113. Grossmann, J. G.: Metal-induced conformational changes in transferrins. J. Mol. Biol. 229, 585 (1993).10.1006/jmbi.1993.1063Search in Google Scholar PubMed

114. Planas-Bohne, F., Rau, W.: Comparison of the binding of 59Fe-and 239Pu-transferrin to rat liver cell membranes. Human Exp. Toxicol. 9, 17 (1990).10.1177/096032719000900105Search in Google Scholar PubMed

115. Jensen, M. P., Gormen-Lewis, D., Aryal, B., Paunesku, T., Vogt, S., Rickert, P. G., Seifert, S., Lai, B., Woloschak, G. E., Soderholm, I.: An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium. Nat. Chem. Biol. 7, 560 (2011).10.1038/nchembio.594Search in Google Scholar PubMed PubMed Central

116. Brulfert, F., Safi, S., Jeanson, A., Foerstendorf, H., Weiss, S., Berthomieu, C., Sauge-Merle, S., Simoni, E.: Enzymatic activity of the CaM-PDE1 system upon addition of actinyl ions. J. Inorg. Biochem. 172, 46 (2017).10.1016/j.jinorgbio.2017.04.007Search in Google Scholar PubMed

117. Lu, Y., Wei, H., Zhang, Z., Li, Y., Wu, G., Liao, W.: Selective extraction and separation of thorium from rare earths by a phosphorodiamidate extractant. Hydrometallurgy 163, 192 (2016).10.1016/j.hydromet.2016.04.008Search in Google Scholar

Received: 2019-02-18
Accepted: 2019-06-06
Published Online: 2019-07-18
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3120/html
Scroll to top button