Home The periodic table – an experimenter’s guide to transactinide chemistry
Article
Licensed
Unlicensed Requires Authentication

The periodic table – an experimenter’s guide to transactinide chemistry

  • Robert Eichler EMAIL logo
Published/Copyright: March 16, 2019

Abstract

The fundamental principles of the periodic table guide the research and development of the challenging experiments with transactinide elements. This guidance is elucidated together with experimental results from gas phase chemical studies of the transactinide elements with the atomic numbers 104–108 and 112–114. Some deduced chemical properties of these superheavy elements are presented here in conjunction with trends established by the periodic table. Finally, prospects are presented for further chemical investigations of transactinides based on trends in the periodic table.

References

1. Mendeleev, D. I.: Relationship of elements properties to their atomic weights. J. Russ. Chem. Soc. 1, 60 (1869) (in Russian).Search in Google Scholar

2. Mendeleev, D. I.: On the relations of elements properties to their atomic weights. Z. fϋr Chem. 12, 405 (1869) (in German).Search in Google Scholar

3. Geng, H. Y.: Public debate on metallic hydrogen to boost high pressure research. Mat. Rad. Extr. 2, 275 (2017).10.1016/j.mre.2017.10.001Search in Google Scholar

4. Pyykkö, P., Desclaux, J.-P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276 (1979).10.1021/ar50140a002Search in Google Scholar

5. Fricke, B., Waber, J. T.: Theoretical prediction of the chemistry of superheavy elements. Actinides Rev. 1, 433 (1971).Search in Google Scholar

6. Schwerdtfeger, P., ed.: Relativistic Electronic Structure Theory. Part I. Fundamentals; Theoretical and Computational Chemistry (2002), Vol. 11, Elsevier, Amsterdam.Search in Google Scholar

7. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).10.1021/cr00085a006Search in Google Scholar

8. White, H. E.: Pictorial representations of the electron cloud for hydrogen-like atoms. Phys. Rev. 37, 1416 (1931).10.1103/PhysRev.37.1416Search in Google Scholar

9. White, H. E.: Pictorial representations of the Dirac electron cloud for hydrogen-like atoms. Phys. Rev. 38, 513 (1931).10.1103/PhysRev.38.513Search in Google Scholar

10. Dirac, P. A. M.: Quantum mechanics of many-electron systems. Proc. R. Soc. Lond. A 123, 714 (1929).10.1098/rspa.1929.0094Search in Google Scholar

11. Pershina, V. P.: Electronic structure and properties of the transactinides and their compounds. Chem. Rev. 96(6), 1977 (1996).10.1021/cr941182gSearch in Google Scholar PubMed

12. Türler, A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).10.1021/cr3002438Search in Google Scholar PubMed

13. Herrmann, A., Furthmüller, J., Gäggeler, H. W., Schwerdtfeger, P.: Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).10.1103/PhysRevB.82.155116Search in Google Scholar

14. Steenbergen, K. G., Mewes, J.-M., Pasteka, L. F., Gäggeler, H. W., Kresse, G., Pahl, E., Schwerdtfeger, P.: The cohesive energy of superheavy element copernicium determined from accurate relativistic coupled-cluster theory. Phys. Chem. Chem. Phys. 19, 32286 (2017).10.1039/C7CP07203ASearch in Google Scholar

15. Ter-Akopian, G. M., Dmitriev, S. N.: Searches for superheavy elements in nature: cosmic-ray nuclei; spontaneous fission. Nucl. Phys. A 944, 177 (2015).10.1016/j.nuclphysa.2015.09.004Search in Google Scholar

16. Hofmann, S., Mϋnzenberg, G.: The discovery of the heaviest elements. Rev. Mod. Phys. 72(3), 733 (2000).10.1103/RevModPhys.72.733Search in Google Scholar

17. Oganessian, Yu. Ts., Utyonkov, V. K.: Superheavy nuclei from 48Ca-induced reactions. Nucl. Phys. A 944, 62 (2015).10.1016/j.nuclphysa.2015.07.003Search in Google Scholar

18. Zagrebaev, V. I., Greiner, W.: Cross sections for the production of superheavy nuclei. Nucl. Phys. A 944, 257 (2015).10.1016/j.nuclphysa.2015.02.010Search in Google Scholar

19. Kratz, J. V., Loveland, W., Moody, K. J.: Syntheses of transuranium isotopes with atomic numbers Z≤103 in multi-nucleon transfer reactions. Nucl. Phys. A 944, 117 (2015).10.1016/j.nuclphysa.2015.06.004Search in Google Scholar

20. Roberto, J. B., Alexander, C. W., Boll, R. A., Burns, J. D., Ezold, J. G., Felker, L. K., Hogle, S. L., Rykaczewski, K. P.: Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015).10.1016/j.nuclphysa.2015.06.009Search in Google Scholar

21. Runke, J., Düllamnn, Ch. E., Eberhardt, K., Ellison, P. A., Gregorich, K. E., Hofmann, S., Jäger, E., Kindler, B., Kratz, J. V., Krier, J., Lommel, B., Nitsche, H., Roberto, J. B., Rykaczewski, K. P., Schädel, M., Thörle-Pospiech, P., Trautmann, N., Yakushev, A.: Preparation of actinide targets for the synthesis of the heaviest elements. J. Radioanal. Nucl. Chem. 299(2), 1081 (2014).10.1007/s10967-013-2616-6Search in Google Scholar

22. Magill, J., Dreher, R., Soti, Z.: The Karlsruhe Chart of Nuclides (2018). 10th ed. Nucleonica GmbH, Karlsruhe. http://www.nucleonica.net.Search in Google Scholar

23. Türler, A., Gregorich, K. E.: Experimental techniques. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), Springer-Verlag, Berlin, Heidelberg, p. 261.10.1007/978-3-642-37466-1_5Search in Google Scholar

24. Düllmann, Ch. E.: Physical preseparation: a powerful new method for transactinide chemists. Eur. Phys. J. D 45(1), 75 (2007).10.1140/epjd/e2007-00033-9Search in Google Scholar

25. Le Naour, C., Hoffman, D. C., Trubert, D.: Fundamental and experimental aspects of single atom-at-a-time chemistry. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), Springer-Verlag, Berlin, Heidelberg, p. 241.10.1007/978-3-642-37466-1_4Search in Google Scholar

26. Gäggeler, H. W., Türler, A.: Gas-phase chemistry of superheavy elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), Springer-Verlag, Berlin, Heidelberg, p. 415.10.1007/978-3-642-37466-1_8Search in Google Scholar

27. Kratz, J. V., Nagame, Y.: Liquid-phase chemistry of superheavy elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), Springer-Verlag, Berlin, Heidelberg, p. 309.10.1007/978-3-642-37466-1_6Search in Google Scholar

28. Eichler, R., Eichler, B.: Thermochemical data from gas-phase adsorption and methods of their estimation. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of Superheavy Elements (2014), Springer Verlag, Berlin, Heidelberg, p. 375.10.1007/978-3-642-37466-1_7Search in Google Scholar

29. Eichler, B., Türler, A., Gäggeler, H. W.: Thermochemical characterization of seaborgium compounds in gas adsorption chromatography. J. Phys. Chem. A 103(46), 9296 (1999).10.1021/jp9917751Search in Google Scholar

30. Zvara, I., Chuburkov, Yu. T., Tsaletka, R., Zvarova, T. S., Shalaevski, M. R., Shilov, B. V.: Chemical properies of element 104. Atomn. Energ. 21, 83 (1966).10.1007/BF01116584Search in Google Scholar

31. Seaborg, G. T.: The transuranium elements. Science 104(2704), 379 (1946).10.1126/science.104.2704.379Search in Google Scholar

32. Eichler, B.: The behaviour of radionuclides in gas adsorption chromatographie processes with superimposed chemical reactions (chlorides). Radiochim. Acta 72(1), 19 (1996).10.1524/ract.1996.72.1.19Search in Google Scholar

33. Gäggeler, H. W., Jost, D. T., Baltensperger, U., Weber, A., Kovacs, A., Vermeulen, D., Türler, A.: OLGA II, an on-line gas chemistry apparatus for applications in heavy element research. Nucl. Instrum. Methods Phys. Res. A 309, 201 (1991).10.1016/0168-9002(91)90103-WSearch in Google Scholar

34. Türler, A.: Gas phase chemistry experiments with transactinide elements. Radiochim. Acta 72, 7 (1996).10.1524/ract.1996.72.1.7Search in Google Scholar

35. Yakushev, A. B., Timokhin, S. N., Vedeneev, M. V., Honggui, X., Zvara, I.: Comparative study of oxochlorides of molybdenum, tungsten and element 106. J. Radioanal. Nucl. Chem. 205, 63 (1996).10.1007/BF02040550Search in Google Scholar

36. Timokhin, S. N., Yakushev, A. B., Xu, H., Perelygin, V. P., Zvara, I.: Chemical identification of element 106 by thermochromatography. J. Radioanal. Nucl. Chem. Lett. 212, 31 (1996).10.1007/BF02165448Search in Google Scholar

37. Zvara, I., Yakushev, A. B., Timokhin, S. N., Honggui, X., Perelygin, V. P., Chuburkov, Yu. T.: Chemical identification of element 106 (thermochromatography of oxochlorides). Radiochim. Acta 81, 179 (1998).10.1524/ract.1998.81.4.179Search in Google Scholar

38. Schädel, M., Brüchle, W., Dressler, R., Eichler, B., Gäggeler, H. W., Günther, R., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kratz, J. V., Paulus, W., Schumann, D., Timokhin, S., Trautmann, N., Türler, A., Wirth, G., Yakuschev, A.: Chemical properties of element 106 (seaborgium). Nature 388, 55 (1997).10.1038/40375Search in Google Scholar

39. Türler, A., Brüchle, W., Dressler, R., Eichler, B., Eichler, R., Gäggeler, H. W., Gärtner, M., Glatz, J. P., Gregorich, K. E., Hübener, S., Jost, D. T., Lebedev, V. Y., Pershina, V. G., Schädel, M., Taut, S., Timokhin, S. N., Trautmann, N., Vahle, A., Yakushev, A. B.: First measurement of a thermochemical property of a seaborgium compound. Angew. Chem. Int. Ed. 38, 2212 (1999).10.1002/(SICI)1521-3773(19990802)38:15<2212::AID-ANIE2212>3.0.CO;2-6Search in Google Scholar

40. Eichler, R., Brüchle, W., Dressler, R., Düllmann, C. E., Eichler, B., Gaeggeler, H. W., Gregorich, K. E., Hoffman, D. C., Hubener, S., Jost, D. T., Kirbach, U. W., Laue, C. A., Lavanchy, V. M., Nitsche, H., Patin, J. B., Piguet, D., Schaedel, M., Shaughnessy, D. A., Strellis, D. A., Taut, S., Tobler, L., Tsyganov, Y. S., Tuerler, A., Vahle, A., Wilk, P. A., Yakushev, A. B.: Chemical characterization of bohrium (element 107). Nature 407, 63 (2000).10.1038/35024044Search in Google Scholar

41. Düllmann, C. E., Eichler, B., Eichler, R., Gäggeler, H. W., Jost, D. T., Piguet, D., Türler, A.: IVO, a device for in situ volatilization and on-line detection of products from heavy ion reactions. Nucl. Instrum. Methods Phys. Res. A 479, 631 (2002).10.1016/S0168-9002(01)00898-1Search in Google Scholar

42. Düllmann, Ch. E., Eichler, B., Eichler, R., Gäggeler, H. W., Jost, D. T., Piguet, D., Türler, A.: On the stability and volatility of group 8 tetroxides, MO4 (M=ruthenium, osmium, and hassium (Z=108)). J. Phys. Chem. B 106, 6679 (2002).10.1021/jp0257146Search in Google Scholar

43. Kirbach, U. W., Folden, C. M., III; Ginter, T. N., Gregorich, K. E., Lee, D. M., Ninov, V., Omtvedt, J. P., Patin, J. B., Seward, N. K., Strellis, D. A., Sudowe, R., Türler, A., Wilk, P. A., Zielinski, P. M., Hoffman, D. C., Nitsche, H.: The cryo-thermochromatographic separator (CTS): a new rapid separation and a-detection system for on-line chemical studies of highly volatile osmium and hassium (Z=108) tetroxides. Nucl. Instrum. Methods Phys. Res. A 484, 587 (2002).10.1016/S0168-9002(01)01990-8Search in Google Scholar

44. Schädel, M.: The chemistry of superheavy elements. Acta Phys. Pol. B 34, 1701 (2003).10.1007/b100152Search in Google Scholar

45. Düllmann, C. E., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H. W., Ginter, T. N., Glaus, F., Gregorich, K. E., Hoffman, D. C., Jäger, E., Jost, D. T., Kirbach, U. W., Lee, D. M., Nitsche, H., Patin, J. B., Pershina, V., Piguet, D., Qin, Z., Schäel, M., Schausten, B., Schimpf, E., Schott, H. J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S. N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A. B., Zielinski, P. M.: Chemical investigation of hassium (element 108). Nature 418, 859 (2002).10.1038/nature00980Search in Google Scholar

46. Pershina, V., Anton, J., Jacob, T.: Fully relativistic density-functional-theory calculations of the electronic structures of MO4 (M=Ru, Os, and element 108, Hs) and prediction of physisorption. Phys. Rev. A 78, 032518(5) (2008).10.1103/PhysRevA.78.032518Search in Google Scholar

47. Even, J., Yakushev, A., Duellmann, C. E., Dvorak, J., Eichler, R., Gothe, O., Hild, D., Jaeger, E., Khuyagbaatar, J., Kratz, J. V., Krier, J., Niewisch, L., Nitsche, H., Pysmenetska, I., Schaedel, M., Schausten, B., Tuerler, A., Wiehl, N., Wittwer, D.: Rapid synthesis of radioactive transition-metal carbonyl complexes at ambient conditions. Inorg. Chem. 51(12), 6431 (2012).10.1021/ic300305mSearch in Google Scholar

48. Wang, Y., Qin, Z., Fan, F. L., Haba, H., Komori, Y., Cao, S. W., Wu, X. L., Tan, C. M.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17(20), 13228 (2015).10.1039/C5CP00979KSearch in Google Scholar PubMed

49. Even, J., Yakushev, A., Dullmann, C. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seaborgium carbonyl complex. Science 345(6203), 1491 (2014).10.1126/science.1255720Search in Google Scholar PubMed

50. Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).10.1063/1.4802765Search in Google Scholar PubMed

51. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Düllmann, Ch. E., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Schädel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).10.1515/ract-2015-2445Search in Google Scholar

52. Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).10.1515/ract-2015-2447Search in Google Scholar

53. Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).10.1021/ja9928273Search in Google Scholar

54. Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: Metal–CO bonding revisited. Inorg. Chem. 56, 1638 (2017).10.1021/acs.inorgchem.6b02759Search in Google Scholar PubMed

55. Lewis, K. E., Golden, D. M., Smith, G. P.: Organometallic bond dissociation energies: laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6. J. Am. Chem. Soc. 106, 3905 (1984).10.1021/ja00326a004Search in Google Scholar

56. Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114. Kernenergie 19, 307 (1976).Search in Google Scholar

57. Eichler, B., Reetz, T.: Chemical isolation of new elements. Kernenergie 25, 218 (1982).Search in Google Scholar

58. Soverna, S., Dressler, R., Düllmann, C. E., Eichler, B., Eichler, R., Gaeggeler, H. W., Haenssler, F., Niklaus, J.-P., Piguet, D., Qin, Z., Tuerler, A., Yakushev, A.: Thermochromatographic studies of mercury and radon on transition metal surfaces. Radiochim. Acta 93, 1 (2005).10.1524/ract.93.1.1.58298Search in Google Scholar

59. Eichler, R., Schädel, M.: Adsorption of radon on metal surfaces: a model study for chemical investigations of elements 112 and 114. J. Phys. Chem. B 106, 5413 (2002).10.1021/jp015553qSearch in Google Scholar

60. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Haenssler, F., Itkis, M. G., Laube, A., Lebedev, V. Y., Malyshev, O. N., Oganessian, Y. Ts., Petrushkin, O. V., Piguet, D., Rasmussen, P., Shishkin, S. V., Shutov, A. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Chemical characterization of element 112. Nature 447, 72 (2007).10.1038/nature05761Search in Google Scholar PubMed

61. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Haenssler, F., Itkis, M. G., Laube, A., Lebedev, V. Y., Malyshev, O. N., Oganessian, Y. Ts., Petrushkin, O. V., Piguet, D., Rasmussen, P., Shishkin, S. V., Shutov, A. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Thermochemical and physical properties of element 112. Angew. Chem. Int. Ed. 47, 3262 (2008).10.1002/anie.200705019Search in Google Scholar PubMed

62. Pitzer, K. S.: Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032 (1975).10.1142/9789812795960_0020Search in Google Scholar

63. Pershina, V., Chem. Reactivity of superheavy elements Cn, Nh, and Fl and their lighter homologues Hg, Tl, and Pb, Respectively, with a gold surface from periodic DFT calculations. Inorg. Chem. 57(7), 3948 (2018).10.1021/acs.inorgchem.8b00101Search in Google Scholar PubMed

64. Serov, A., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., Gäggeler, H. W.: Gas chromatography of indium in macroscopic and carrier-free amounts using quartz and gold as stationary phases. Radiochim. Acta 99, 95 (2011).10.1524/ract.2011.1797Search in Google Scholar

65. Serov, A., Eichler, R., Türler, A., Wittwer, D., Gäggeler, H. W., Dressler, R., Piguet, D., Vögele, A.: Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. Radiochim. Acta 101, 421 (2013).10.1524/ract.2013.2045Search in Google Scholar

66. Pershina, V., Iliaš, M.: Electronic structure and properties of MAu and MOH, where M=Tl and Nh: new data. Chem. Phys. Lett. 694, 107 (2018).10.1016/j.cplett.2018.01.045Search in Google Scholar

67. Dmitriev, S. N., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chelnokov, M. L., Chepygin, V. I., Eichler, R., Isaev, A. V., Katrasev, D. E., Lebedev, V. Ya., Malyshev, O. N., Petrushkin, O. V., Porobanuk, L. S., Ryabinin, M. A., Sabel’nikov, A. V., Sokol, E. A., Svirikhin, A. V., Starodub, G. Ya., Usoltsev, I., Vostokin, G. K., Yeremin, A. V.: Pioneering experiments on the chemical properties of element 113. Mendeleev Commun. 24, 253 (2014).10.1016/j.mencom.2014.09.001Search in Google Scholar

68. Aksenov, N. V., Steinegger, P. J., Abdullin, F. S., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Eichler, R., Lebedev, V. Y., Mamudarov, A. S., Malyshev, O. N., Petrushkin, O. V., Polyakov, A. N., Popov, Y. A., Sabelnikov, A. V., Sagaidak, R. N., Shirokovsky, I. V., Shumeiko, M. V., Starodub. G. Ya., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K., Yeremin, A., Dmitriev, S. N.: On the volatility of nihonium (Nh, Z=113). Eur. Phys. J. A 53, 158 (2017).10.1140/epja/i2017-12348-8Search in Google Scholar

69. Eichler, R., Aksenov, N. V., Albin, Yu. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gaggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Ya., Malyshev, O. N., Moody, K. J., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Stoyer, N. J., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wilk, P. A., Wittwer, D., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).10.1524/ract.2010.1705Search in Google Scholar

70. Yakushev, A., Gates, J. M., Türler, A., Schädel, M., Düllmann, Ch. E., Ackermann, D., Andersson, L. L., Block, M., Brüchle, W., Dvorak, J., Eberhardt, K., Essel, H. G., Even, J., Forsberg, U., Gorshkov, A., Graeger, R., Gregorich, K. E., Hartmann, W., Herzberg, R. D., Hessberger, F., Hild, D., Hübner, A., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kurz, N., Lommel, B., Niewisch, J., Nitsche, H., Omtvedt, J. P., Parr, E., Qin Zhi Rudolp, D., Runke, J., Schausten, B., Schimpf, E., Semchenkov, A., Steiner, J., Thörle Pospiech, P., Uusito, J., Wegrzecki, M., Wiehl, N.: Superheavy element flerovium (element 114) is a volatile metal. Inorg. Chem. 53, 1624 (2014).10.1021/ic4026766Search in Google Scholar PubMed

71. Pershina, V.: Theoretical Chemistry of the heaviest elements. In: M. Schädel, D. Shaughnessy (Eds.) The Chemistry of Superheavy Elements (2014), Springer-Verlag, Berlin, Heidelberg, p. 209.10.1007/978-3-642-37466-1_3Search in Google Scholar

72. Eichler, B., Kratz, J. V.: Electrochemical deposition of carrier-free radionuclides. Radiochim. Acta 88, 475 (2000).10.1524/ract.2000.88.8.475Search in Google Scholar

73. Hummrich, H., Banik, N. L., Breckheimer, M., Brüchle, W., Buda, R., Feist, F., Jäger, E., Kratz, J. V., Kuczewski, B., Liebe, D., Niewisch, L., Schädel, M., Schausten, B., Schimpf, E., Wiehl, N.: Electrodeposition methods in superheavy element chemistry. Radiochim. Acta 96, 73 (2008).10.1524/ract.2008.1473Search in Google Scholar

74. Toyoshima, A., Kasamatsu, Y., Tsukada, K., Asai, M., Kitatsuji, Y., Ishii, Y., Toume, H., Nishinaka, I., Haba, H., Ooe, K., Sato, T., Shinohara, A., Akiyama, K., Nagame, Y.: Oxidation of element 102, nobelium, with flow electrolytic column chromatography on an atom-at-a-time scale. J. Am. Chem. Soc. 131, 9180 (2009).10.1021/ja9030038Search in Google Scholar PubMed

75. Chiera, N. M., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Eichler, R., Lebedev, V. Ya., Madumarov, A., Malyshev, O. N., Piguet, D., Popov, Y. A., Sabelnikov, A. V., Steinegger, P., Svirikhin, A. I., Türler, A., Vostokin, G. K., Vögele, A., Yeremin, A. V.: Interaction of elemental mercury with selenium surfaces: model experiments for investigations of superheavy elements copernicium and flerovium. J. Radioanal. Nucl. Chem. 311(1), 99 (2017).10.1007/s10967-016-5018-8Search in Google Scholar

76. Borschevsky, A., Pasteka, F., Pershina, V., Eliav, E., Kaldor, U.: Ionization potentials and electron affinities of the superheavy elements 115–117 and their sixth-row homologues Bi, Po, and At. Phys. Rev. A 91, 020501(R) (2015).10.1103/PhysRevA.91.020501Search in Google Scholar

77. Sato, T. K., Asai, M., Borschevsky, A., Stora, T., Sato, N., Kaneya, Y., Tsukada, K., Duellmann, Ch E., Eberhardt, K., Eliav, E., Ichikawa, S., Kaldor, U., Kratz, J. V., Miyashita, S., Nagame, Y., Ooe, K., Osa, A., Renisch, D., Runke, J., Schaedel, M., Thoerle-Pospiech, P., Toyoshima, A., Trautmann, N.: Measurement of the first ionization potential of lawrencium, element 103. Nature 520, 209 (2015).10.1038/nature14342Search in Google Scholar PubMed

78. Steinegger, P., Dressler, R., Eichler, R., Piguet, D., Streuli, S., Türler, A.: Diamond detectors for high-temperature transactinide chemistry experiments. Nucl. Instr. Meth. Phys. Res. A 850, 61 (2017).10.1016/j.nima.2016.12.014Search in Google Scholar

79. Neumayr, J. B., Thirolf, P. G., Habs, D., Heinz, S., Kolhinen, S. S., Sewtz, M., Szerypo, J.: Performance of the MLL-IonCatcher. Rev. Sci. Instr. 77, 065109 (2006).10.1063/1.2213154Search in Google Scholar

80. Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P., Nazarewicz, W.: Electron and nucleon localization functions of oganesson: approaching the thomas-fermi limit. Phys. Rev. Lett. 120, 053001 (2018).10.1103/PhysRevLett.120.053001Search in Google Scholar PubMed

81. Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.: Element 118: the first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350 (1996).10.1103/PhysRevLett.77.5350Search in Google Scholar PubMed

82. Goidenko, I., Labzowsky, L., Eliav, E., Kaldor, U., Pyykkö, P.: QED corrections to the binding energy of the eka-radon Z=118 negative ion. Phys Rev. A 67, 020102(3)R (2003).10.1103/PhysRevA.67.020102Search in Google Scholar

83. Fricke, B., Greiner, W., Waber, J. T.: The continuation of the periodic table up to Z=172. The chemistry of superheavy elements. Theoret. Chim. Acta 21, 235 (1971).10.1007/BF01172015Search in Google Scholar

84. Nefedov, V. I., Trzhaskovskaya, M. B., Yarzhemskii, V. G.: Electronic configurations and the periodic table for superheavy elements. Dokl. Akad. Nauk 408(4), 488 (2006).10.1134/S0012501606060029Search in Google Scholar

85. Pyykkö, P.: The physics behind chemistry and the periodic table. Chem. Rev. 112, 371 (2012).10.1021/cr200042eSearch in Google Scholar PubMed

Received: 2018-11-14
Accepted: 2019-02-18
Published Online: 2019-03-16
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Downloaded on 22.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2018-3080/html
Scroll to top button