Home Physical Sciences Direct mass measurements and ionization potential measurements of the actinides
Article
Licensed
Unlicensed Requires Authentication

Direct mass measurements and ionization potential measurements of the actinides

  • Michael Block EMAIL logo
Published/Copyright: June 18, 2019

Abstract

The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements to the transactinide elements in the near future. This contribution summarizes recent achievements in Penning trap mass spectrometry and laser spectroscopy of the late actinides and addresses future perspectives.

Funding source: BMBF

Award Identifier / Grant number: 05P18UMFN1

Funding statement: The contributions of the members of the SHIPTRAP, TRIGATRAP and RADRIS collaborations to the experiments reviewed in this manuscript are gratefully acknowledged. This work has been financially supported in part by BMBF within the grant 05P18UMFN1.

References

1. Öhrström, L., Reedijk, J.: Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Pure Appl. Chem. 88, 1225 (2016).10.1515/pac-2016-0501Search in Google Scholar

2. Giuliani, S.A., Matheson, Z., Nazarewicz, W., Olsen, E., Reinhard, P.-G., Sadhukhan, J., Schuetrumpf, B., Schunck, N., Schwerdtfeger, P.: Superheavy elements: oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).10.1103/RevModPhys.91.011001Search in Google Scholar

3. Fricke, B.: Superheavy Elements: A Prediction of their Chemical and Physical Properties, Springer Verlag, Berlin Heidelberg GmbH (1975) 21, p. 89.10.1007/BFb0116498Search in Google Scholar

4. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).10.1021/cr00085a006Search in Google Scholar

5. Schwerdtfeger, P., Pašteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).10.1016/j.nuclphysa.2015.02.005Search in Google Scholar

6. Ephraim, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).10.1016/j.nuclphysa.2015.06.017Search in Google Scholar

7. Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).10.1016/j.nuclphysa.2015.04.007Search in Google Scholar

8. Schädel, M.: Chemistry of superheavy elements. Angew. Chem. Int. Ed. 45, 368 (2006).10.1002/anie.200461072Search in Google Scholar

9. Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).10.1142/9789812795953_0007Search in Google Scholar

10. Seaborg, G. T.: The transuranium elements. Science 104, 379 (1946).10.1126/science.104.2704.379Search in Google Scholar

11. Sobiczewski, A., Gareev, F., Kalinkin, B.: Closed shells for Z>82 and N>126 in a diffuse potential well. Phys. Lett. 22, 500 (1966).10.1016/0031-9163(66)91243-1Search in Google Scholar

12. Meldner, H.: Predictions of new magic regions and masses for superheavy nuclei from calculations with realistic shell model single particle Hamiltonians. Ark. Fys. 36, 593 (1967).Search in Google Scholar

13. Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I.-L., Möller, P., Nilsson, B.: On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1 (1969).10.1016/0375-9474(69)90809-4Search in Google Scholar

14. Mosel, U., Greiner, W.: On the stability of superheavy nuclei against fission. Z. Phys. 222, 261 (1969).10.1007/BF01392125Search in Google Scholar

15. Oganessian, Y. T., Utyonkov, V. K.: Superheavy element research. Rep. Prog. Phys. 78, 036301 (2015).10.1088/0034-4885/78/3/036301Search in Google Scholar PubMed

16. Münzenberg, G.: From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5 (2015).10.1016/j.nuclphysa.2015.06.008Search in Google Scholar

17. Morita, K.: SHE research at RIKEN/GARIS. Nucl. Phys. A 944, 30 (2015).10.1016/j.nuclphysa.2015.10.007Search in Google Scholar

18. Backe, H., Lauth, W., Block, M., Laatiaoui, M.: Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492 (2015).10.1016/j.nuclphysa.2015.07.002Search in Google Scholar

19. Block, M.: Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps. Hyperfine Int. 238, 40 (2017).10.1007/s10751-017-1410-1Search in Google Scholar

20. Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Int. J. Mass Spectrom. 349, 94 (2013).10.1016/j.ijms.2013.02.013Search in Google Scholar

21. Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Nucl. Phys. A 944, 471 (2015).10.1016/j.nuclphysa.2015.09.009Search in Google Scholar

22. Block, M.: Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure. Radiochim. Acta 107, 603 (2019).10.1515/ract-2019-0002Search in Google Scholar

23. Campbell, P., Moore, I.-D., Pearson, M.-D.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016).10.1016/j.ppnp.2015.09.003Search in Google Scholar

24. Lunney, D., Pearson, J., Thibault, C.: Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003).10.1103/RevModPhys.75.1021Search in Google Scholar

25. Roberto, J., Alexander, C. W., Boll, R. A., Burns, J. D., Ezold, J. G., Felker, L. K., Hogle, S. L., Rykaczewski, K. P.: Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015).10.1016/j.nuclphysa.2015.06.009Search in Google Scholar

26. Neumayr, J., Beck, L., Habs, D., Heinz, S., Szerypo, J., Thirolf, P. G., Varentsov, V., Voit, F., Ackermann, D., Beck, D., Block, M., Di, Z., Eliseev, S. A., Geissel, H., Herfurth, F., Heßberger, F. P., Hofmann, S., Kluge, H.-J., Mukherjee, M., Muenzenberg, G., Petrick, M., Quint, W., Rahaman, S., Rauth, C., Rodriguez, D., Scheidenberger, C., Sikler, G., Wang, Z., Plass, W. R., Breitenfeld, M., Chaudhuri, A., Marx, G., Schweikhard, L., Dodonov, A. F., Novikov, Y., Suhonen, M.: The ion-catcher device for SHIPTRAP. Nucl. Instrum. Meth. B 244, 489 (2006).10.1016/j.nimb.2005.10.017Search in Google Scholar

27. Lautenschläger, F., Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Clark, A., Droese, C., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Kaleja, O., Khuyagbaatar, J., Kunz, P., Mistry, A. K., Laatiaoui, M., Lauth, W. Raeder, S., Walther, T., Wraith, C.: Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Meth. B 383, 115 (2016).10.1016/j.nimb.2016.06.001Search in Google Scholar

28. Block, M., Ackermann, D., Blaum, K., Droese, C., Dworschak, M., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plass, W. R., Popeko, A., Rahaman, S., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Weber, C.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010).10.1038/nature08774Search in Google Scholar PubMed

29. Minaya Ramirez, E., Ackermann, D., Blaum, K., Block, M., Droese, C., Düllmann, Ch.E., Dworschak, M., Eibach, M., Eliseev, S., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Marx, G., Mazzocco, M., Nesterenko, D., Novikov, Yu. N., Plass, W. R., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Weber, C.: Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012).10.1126/science.1225636Search in Google Scholar PubMed

30. Ferrer, R., Barzakh, A., Bastin, B, Beerwerth, R., Block, M., Creemers, P., Grawe, H., de Groote, R., Delahaye, P., Fléchard, X., Franchoo, S., Fritzsche, S., Gaffney, L. P., Ghys, L., Gins, W., Granados, C., Heinke, R., Hijazi, L., Huyse, M., Lron, T. Kudryavtsev, Yu., Laatiaoui, M., Lecesne, N., Loiselet, M., Lutton, F., Moore, I. D., Martinez, Y., Mogilevskiy, E., Naubereit, P., Piot, J., Raeder, S. Rothe, S., Savajols, H., Sels, S., Sonnenschein, V., Thomas, J-C., Traykov, E., Van Beveren, C., Van den Bergh, P., Van Duppen, P., Wendt, K., Zadvornaya, A.: Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017).10.1038/ncomms14520Search in Google Scholar PubMed PubMed Central

31. Laatiaoui, M., Lauth, W., Backe, H., Block, M., Ackermann, D., Cheal, B., Chhetri, P., Düllmann, Ch. E., van Duppen, P., Even, J., Ferrer, R, Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Lautenschläger, F., Mistry, A. M., Minaya Ramirez, E., Raeder, S., Walther, Th., Wraith, C., Yakushev, A.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495 (2016).10.1038/nature19345Search in Google Scholar PubMed

32. Droese, C., Eliseev, S., Blaum, K., Block, M., Herfurth, F., Laatiaoui, M, Lautenschläger, F., Minaya Ramirez, E., Schweikhard, L., Simon, V. V., Thirolf, P. G.: The cryogenic gas stopping cell of SHIPTRAP. Nucl. Instrum. Meth. B 338, 126 (2014).10.1016/j.nimb.2014.08.004Search in Google Scholar

33. Wense, L. v. d., Seiferle, B., Laatiaoui, M., Thirolf, P. G.: Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015).10.1140/epja/i2015-15029-8Search in Google Scholar

34. Mumpower, M., Surman, R., Fang, D. L., Beard, M., Möller, P., Kawano, T., Aprahamian A.: The impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015).10.1103/PhysRevC.92.035807Search in Google Scholar

35. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006).10.1016/j.physrep.2005.10.011Search in Google Scholar

36. Kluge, H.-J.: Penning trap mass spectrometry of radionuclides. Int. J. Mass Spectrom. 349, 26 (2013).10.1016/j.ijms.2013.04.017Search in Google Scholar

37. Wollnik, H.: History of mass measurements in time-of-flight mass analyzers. Int. J. Mass Spectrom. 349, 38 (2013).10.1016/j.ijms.2013.04.023Search in Google Scholar

38. Brown, L. S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986).10.1103/RevModPhys.58.233Search in Google Scholar

39. Kretzschmar, M.: Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991).10.1088/0143-0807/12/5/010Search in Google Scholar

40. Myers, E. G.: The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectrom. 349, 107 (2013).10.1016/j.ijms.2013.03.018Search in Google Scholar

41. Bollen, G., Davies, D., Facina, M., Huikari, J., Kwan, E., Lofy, P. A., Morrissey, D. J., Prinke, A., Ringle, R., Savory, J., Schury, P., Schwarz, S., Sumithrarachchi, C., Sun, T., Weissman, L.: Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed β emitter 38Ca. Phys. Rev. Lett. 96, 152501 (2006).10.1103/PhysRevLett.96.152501Search in Google Scholar PubMed

42. Smith, M., Brodeur, M., Brunner, T., Ettenauer, S., Lapierre, A., Ringle, R., Ryjkov, V. L., Ames, F., Bricault, P., Drake, G. W. F., Delheij, P., Lunney, D., Sarazin, F., Dilling, J.: First Penning-trap mass measurement of the exotic halo nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008).10.1103/PhysRevLett.101.202501Search in Google Scholar PubMed

43. Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D. A., Novikov, Yu. N., Schweikhard, L.: Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013).10.1103/PhysRevLett.110.082501Search in Google Scholar PubMed

44. Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, Ch.E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Yu.N., Rischka, A., Schüssler, R.X., Schweikhard, L., Türler A.: Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015).10.1103/PhysRevLett.115.062501Search in Google Scholar PubMed

45. Vilen, M., Kelly, J.M., Kankainen, A., Brodeur, M., Aprahamian, A., Canete, L., Eronen, T., Jokinen, A., Kuta, T., Moore, I.D., Mumpower, M.R., Nesterenko, D.A., Penttilä, H., Pohjalainen, I., Porter, W.S., Rinta-Antila, S., Surman, R., Voss, A., Äystö J.: Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 120, 262701 (2018).10.1103/PhysRevLett.120.262701Search in Google Scholar PubMed

46. Orford, R., Vassh, N., Clark, J.A., McLaughlin, G.C., Mumpower, M.R., Savard, G., Surman, R., Aprahamian, A., Buchinger, F., Burkey, M.T., Gorelov, D.A. Hirsh, T.Y., Klimes, J.W., Morgan, G.E., Nystrom, A., Sharma, K.S.: Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018).10.1103/PhysRevLett.120.262702Search in Google Scholar PubMed

47. Dworschak, M., Block, M., Ackermann, D., Audi, G., Blaum, K., Droese, C., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F., Hofmann, S., Ketelaer, J., Ketter, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plass, W. R., Popeko, A., Rahaman, S., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Wang, M., Weber, C.: Penning trap mass measurements on nobelium isotopes. Phys. Rev. C 81, 064312 (2010).10.1103/PhysRevC.81.064312Search in Google Scholar

48. Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, Ch. E., Eberhardt, K., Grund, J., Nagy, Sz., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K. P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on Am-241, Am-243, Pu-244, and Cf-249. Phys. Rev. C 89, 064318 (2014).10.1103/PhysRevC.89.064318Search in Google Scholar

49. Ketelaer, J., Kraemer, J., Beck, D., Blaum, K., Block, M., Eberhardt, K., Eitel, G., Ferrer, R., Geppert, C., George, S., Herfurth, F., Ketter, J., Nagy, Sz., Neidherr, D., Neugart, R., Nörtershäuser, W., Repp, J., Smorra, C., Trautmann, N., Weber, C.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Meth. A 594, 162 (2008).10.1016/j.nima.2008.06.023Search in Google Scholar

50. Ito, Y., Schury, P., Wada, M., Arai, F., Haba, H., Hirayama, Y., Ishizawa, S., Kaji, D. Kimura, S., Koura, H., MacCormick, M., Miyatake, H., Moon, J. Y., Morimoto, K., Morita, K., Mukai, M., Murray, I., Niwase, T., Okada, K., Ozawa, O., Rosenbusch, M., Takamine, A., Tanaka, T., Watanabe, Y. X., Wollnik, H., Yamaki, S.: First direct mass measurements of nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).10.1103/PhysRevLett.120.152501Search in Google Scholar PubMed

51. Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2016).10.1088/1674-1137/41/3/030003Search in Google Scholar

52. Gates, J. M., Pang, G.K., Pore, J.L., Gregorich, K.E., Kwarsick, J.T., Savard, G., Esker, N.E., Kireeff Covo, M., Mogannam, M.J., Batchelder, J.C., Bleuel, D.L., Clark, R.M., Crawford, H.L., Fallon, P., Hubbard, K.K., Hurst, A.M., Kolaja, I.T., Macchiavelli, A.O., Morse, C., Orford, R., Phair, L., Stoyer, M.A.: First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).10.1103/PhysRevLett.121.222501Search in Google Scholar PubMed

53. Neidherr, D., Audi, G., Beck, D., Blaum, K., Böhm, Ch., Breitenfeldt, M., Cakirli, R. B., Casten, R. F., George, S., Herfurth, F., Herlert, A., Kellerbauer, A., Kowalska, M., Lunney, D., Minaya-Ramirez, E., Naimi, S., Noah, E., Penescu, L., Rosenbusch, M., Schwarz, S., Schweikhard, L., Stora, T.: Discovery of 229Rn and the structure of the heaviest Rn and Ra isotopes from Penning-trap mass measurements. Phys. Rev. Lett. 102, 112501 (2009).10.1103/PhysRevLett.102.112501Search in Google Scholar PubMed

54. Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z≥104 in gas phase. Nucl. Phys. A 944, 640 (2015).10.1016/j.nuclphysa.2015.09.012Search in Google Scholar

55. Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z≥104 in liquid phase. Nucl. Phys. A 944, 614 (2015).10.1016/j.nuclphysa.2015.07.013Search in Google Scholar

56. Marsh, B., Day Goodacre, T., Sels, S., Tsunoda, Y., Andel, B., Andreyev, A. N., Althubiti, N. A., Atanasov, D., Barzakh, A. E., Billowes, J., Blaum, K., Cocolios, T. E., Cubiss, J. G., Dobaczewski, J., Farooq-Smith, G. J., Fedorov, D. V., Fedoseev, V. N., Flanagan, K. T., Gaffney, L. P., Ghys, L., Huyse, M., Kreim, S., Lunney, D., Lynch, K. M., Manea, V., Martinez Palenzuela, Y., Molkanov, P. L., Otsuka, T., Pastore, A., Rosenbusch, M., Rossel, R. E., Rothe, S., Schweikhard, L., Seliverstov, M. D., Spagnoletti, P., Van Beveren, C., Van Duppen, P., Veinhard, M., Verstraelen, E., Welker, A., Wendt, K., Wienholtz, F., Wolf, R. N., Zadvornaya, A., Zuber, K.: Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163 (2018).10.1038/s41567-018-0292-8Search in Google Scholar

57. Heyde, K., Wood, J. L.: Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011).10.1103/RevModPhys.83.1467Search in Google Scholar

58. Backe, H., Hies, M., Kunz, H., Lauth, W., Curtze, O., Schwamb, P., Sewtz, M., Theobald, W., Zahn, R., Eberhardt, K., Trautmann, N., Habs, D., Repnow, R., Fricke, B.: Isotope shift measurements for superdeformed fission isomeric states. Phys. Rev. Lett. 80, 920 (1998).10.1103/PhysRevLett.80.920Search in Google Scholar

59. Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Droese, C., Düllmann, Ch.E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. M., Raeder, S., Van Duppen, P., Walther, Th., Yakushev, A., Zhang, Z.: Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 120, 263003 (2018).10.1103/PhysRevLett.120.263003Search in Google Scholar PubMed

60. Raeder, S., Ackermann, D., Backe, H., Beerwerth, R., Berengut, J. C., Block, M., Borschevsky, A., Cheal, B., Chhetri, P., Droese, C., Düllmann, Ch.E., Dzuba, V. A., Eliav, E., Even, J., Ferrer, R., Flambaum, V. V., Fritzsche, S., Giacoppo, F., Götz, S., Heßberger, F., Huyse, M., Kaldor, U., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. M., Nazarewicz, W., Porsev, S. G., Safronova, M. S., Safronova, U. I., Schuetrumpf, B., Van Duppen, P., Walther, T., Wraith, C., Yakushev, A.: Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 120, 232503 (2018).10.1103/PhysRevLett.120.232503Search in Google Scholar PubMed

61. Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U.: Predicted spectrum of atomic nobelium. Phys. Rev. A 75, 042514 (2007).10.1103/PhysRevA.75.042514Search in Google Scholar

62. Dzuba, V. A., Safronova, M. S., Safronova, U. I.: Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A: At. Mol. Opt. Phys. 90, 012504 (2014).10.1103/PhysRevA.90.012504Search in Google Scholar

63. Porsev, S. G., Safronova, M. S., Safronova, U. I., Dzuba, V. A., Flambaum, V. V.: Nobelium energy levels and hyperfine-structure constants. Phys. Rev. A 98, 052512 (2018).10.1103/PhysRevA.98.052512Search in Google Scholar

64. Schuetrumpf, B., Nazarewicz, W., Reinhard, P.-G.: Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96, 024306 (2017).10.1103/PhysRevC.96.024306Search in Google Scholar

65. Raeder S., Block, M., Chhetri, P., Ferrer, R., Kraemer, S., Kron, T., Laatiaoui, M., Nothhelfer, S., Schneider, F., Van Duppen, P., Verlinde, M., Verstraelen, E., Walther, Th., Zadvornaya, A.: A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Meth. B (2019). https://doi.org/10.1016/j.nimb.2019.05.016.10.1016/j.nimb.2019.05.016Search in Google Scholar

66. Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U.: Transition energies of atomic lawrencium. Eur. Phys. J. D. 45, 115 (2007).10.1140/epjd/e2007-00130-9Search in Google Scholar

67. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta B 52, 717 (1997).10.1016/S0584-8547(96)01670-9Search in Google Scholar

68. Peterson, J. R., Erdmann, N., Nunnemann, M., Eberhardt, K., Huber, G., Kratz, J. V., Passler, G., Stetzer, O., Thörle, P., Trautmann, N., Waldek, A.: Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS). J. Alloys Compd. 876, 271, (1998).10.1016/S0925-8388(98)00238-2Search in Google Scholar

69. Wendt, K., Gottwald, T., Mattolat, C., Raeder, S.: Ionization potentials of the lanthanides and actinides – towards atomic spectroscopy of super-heavy elements. Hyperfine Interact. 227, 55 (2014).10.1007/s10751-014-1041-8Search in Google Scholar

70. Naubereit, P., Gottwald, T., Studer, D., Wendt, K.: Excited atomic energy levels in protactinium by resonance ionization spectroscopy. Phys. Rev. A 98, 022505 (2018).10.1103/PhysRevA.98.022505Search in Google Scholar

71. Sugar, J.: Revised ionization energies of the neutral actinides. J. Chem. Phys. 60, 4103 (1974).10.1063/1.1680874Search in Google Scholar

72. Sato, T. K., Asai, M., Borschevsky, A., Beerwerth, R., Kaneya, Y., Makii, H., Mitsukai, A., Nagame, Y., Osa, A., Toyoshima, A., Tsukada, K., Sakama, M., Shinsaku, T., Ooe, K., Sato, D., Shigekawa, Y., Ichikawa, S., Düllmann, Ch.E., Grund, J., Renisch, D., Kratz, J. V., Schaedel, M.: First ionization potentials of Fm, Md, No, and Lr: verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609 (2018).10.1021/jacs.8b09068Search in Google Scholar PubMed

73. Kramida, A., Ralchenko, Y., Reader, J.: NIST ASD Team: NIST Atomic Spectra Database (version 5.6.1), https://physics.nist.gov/asd [Tue Feb 12 2019]. National Institute of Standards and Technology, Gaithersburg, MD, USA (2018).Search in Google Scholar

74. Dzuba, V. A., Safronova, M. S., Safronova, U. I., Kramida, A.: Ionization potentials of superheavy elements No, Lr, and Rf and their ions. Phys. Rev. A 94, 042503 (2016).10.1103/PhysRevA.94.042503Search in Google Scholar PubMed PubMed Central

75. Dzuba, V. A.: Ionization potentials and polarizabilities of superheavy elements from Db to Cn (Z=105–112). Phys. Rev. A 93, 032519 (2016).10.1103/PhysRevA.93.032519Search in Google Scholar

76. Kramida, A. E.: A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. Atom Data Nucl. Data 96, 586 (2010).10.1016/j.adt.2010.05.001Search in Google Scholar

Received: 2019-03-21
Accepted: 2019-05-02
Published Online: 2019-06-18
Published in Print: 2019-09-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Editorial: 150 years of the Periodic Table of Chemical Elements
  3. Part A: Actinides and Transactinides
  4. Evolution of the periodic table through the synthesis of new elements
  5. Nuclear and chemical characterization of heavy actinides
  6. Direct mass measurements and ionization potential measurements of the actinides
  7. Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
  8. The periodic table – an experimenter’s guide to transactinide chemistry
  9. Synthesis and properties of isotopes of the transactinides
  10. Part B: Nuclear Energy
  11. Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
  12. Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
  13. Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
  14. Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
  15. Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
  16. What do we know about actinides-proteins interactions?
  17. Part C: Medical Radionuclides
  18. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
  19. Radiochlorine: an underutilized halogen tool
  20. Radiobromine and radioiodine for medical applications
  21. Radiochemical aspects of alpha emitting radionuclides for medical application
  22. Chelators and metal complex stability for radiopharmaceutical applications
Downloaded on 16.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2019-3143/html
Scroll to top button