Abstract
The precise determination of atomic and nuclear properties such as masses, differential charge radii, nuclear spins, electromagnetic moments and the ionization potential of the actinides has been extended to the late actinides in recent years. In particular, laser spectroscopy and mass spectrometry have reached the region of heavy actinides that can only be produced only at accelerator facilities. The new results provide deeper insight into the impact of relativistic effects on the atomic structure and the evolution of nuclear shell effects around the deformed neutron shell closure at N = 152. All these experimental activities have also opened the door to extend such measurements to the transactinide elements in the near future. This contribution summarizes recent achievements in Penning trap mass spectrometry and laser spectroscopy of the late actinides and addresses future perspectives.
Funding source: BMBF
Award Identifier / Grant number: 05P18UMFN1
Funding statement: The contributions of the members of the SHIPTRAP, TRIGATRAP and RADRIS collaborations to the experiments reviewed in this manuscript are gratefully acknowledged. This work has been financially supported in part by BMBF within the grant 05P18UMFN1.
References
1. Öhrström, L., Reedijk, J.: Names and symbols of the elements with atomic numbers 113, 115, 117 and 118 (IUPAC Recommendations 2016). Pure Appl. Chem. 88, 1225 (2016).10.1515/pac-2016-0501Search in Google Scholar
2. Giuliani, S.A., Matheson, Z., Nazarewicz, W., Olsen, E., Reinhard, P.-G., Sadhukhan, J., Schuetrumpf, B., Schunck, N., Schwerdtfeger, P.: Superheavy elements: oganesson and beyond. Rev. Mod. Phys. 91, 011001 (2019).10.1103/RevModPhys.91.011001Search in Google Scholar
3. Fricke, B.: Superheavy Elements: A Prediction of their Chemical and Physical Properties, Springer Verlag, Berlin Heidelberg GmbH (1975) 21, p. 89.10.1007/BFb0116498Search in Google Scholar
4. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).10.1021/cr00085a006Search in Google Scholar
5. Schwerdtfeger, P., Pašteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).10.1016/j.nuclphysa.2015.02.005Search in Google Scholar
6. Ephraim, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).10.1016/j.nuclphysa.2015.06.017Search in Google Scholar
7. Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).10.1016/j.nuclphysa.2015.04.007Search in Google Scholar
8. Schädel, M.: Chemistry of superheavy elements. Angew. Chem. Int. Ed. 45, 368 (2006).10.1002/anie.200461072Search in Google Scholar
9. Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).10.1142/9789812795953_0007Search in Google Scholar
10. Seaborg, G. T.: The transuranium elements. Science 104, 379 (1946).10.1126/science.104.2704.379Search in Google Scholar
11. Sobiczewski, A., Gareev, F., Kalinkin, B.: Closed shells for Z>82 and N>126 in a diffuse potential well. Phys. Lett. 22, 500 (1966).10.1016/0031-9163(66)91243-1Search in Google Scholar
12. Meldner, H.: Predictions of new magic regions and masses for superheavy nuclei from calculations with realistic shell model single particle Hamiltonians. Ark. Fys. 36, 593 (1967).Search in Google Scholar
13. Nilsson, S. G., Tsang, C. F., Sobiczewski, A., Szymański, Z., Wycech, S., Gustafson, C., Lamm, I.-L., Möller, P., Nilsson, B.: On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1 (1969).10.1016/0375-9474(69)90809-4Search in Google Scholar
14. Mosel, U., Greiner, W.: On the stability of superheavy nuclei against fission. Z. Phys. 222, 261 (1969).10.1007/BF01392125Search in Google Scholar
15. Oganessian, Y. T., Utyonkov, V. K.: Superheavy element research. Rep. Prog. Phys. 78, 036301 (2015).10.1088/0034-4885/78/3/036301Search in Google Scholar PubMed
16. Münzenberg, G.: From bohrium to copernicium and beyond SHE research at SHIP. Nucl. Phys. A 944, 5 (2015).10.1016/j.nuclphysa.2015.06.008Search in Google Scholar
17. Morita, K.: SHE research at RIKEN/GARIS. Nucl. Phys. A 944, 30 (2015).10.1016/j.nuclphysa.2015.10.007Search in Google Scholar
18. Backe, H., Lauth, W., Block, M., Laatiaoui, M.: Prospects for laser spectroscopy, ion chemistry and mobility measurements of superheavy elements in buffer-gas traps. Nucl. Phys. A 944, 492 (2015).10.1016/j.nuclphysa.2015.07.002Search in Google Scholar
19. Block, M.: Recent trends in precision measurements of atomic and nuclear properties with lasers and ion traps. Hyperfine Int. 238, 40 (2017).10.1007/s10751-017-1410-1Search in Google Scholar
20. Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Int. J. Mass Spectrom. 349, 94 (2013).10.1016/j.ijms.2013.02.013Search in Google Scholar
21. Block, M.: Direct mass measurements of the heaviest elements with Penning traps. Nucl. Phys. A 944, 471 (2015).10.1016/j.nuclphysa.2015.09.009Search in Google Scholar
22. Block, M.: Precise ground state properties of the heaviest elements for studies of their atomic and nuclear structure. Radiochim. Acta 107, 603 (2019).10.1515/ract-2019-0002Search in Google Scholar
23. Campbell, P., Moore, I.-D., Pearson, M.-D.: Laser spectroscopy for nuclear structure physics. Prog. Part. Nucl. Phys. 86, 127 (2016).10.1016/j.ppnp.2015.09.003Search in Google Scholar
24. Lunney, D., Pearson, J., Thibault, C.: Recent trends in the determination of nuclear masses. Rev. Mod. Phys. 75, 1021 (2003).10.1103/RevModPhys.75.1021Search in Google Scholar
25. Roberto, J., Alexander, C. W., Boll, R. A., Burns, J. D., Ezold, J. G., Felker, L. K., Hogle, S. L., Rykaczewski, K. P.: Actinide targets for the synthesis of super-heavy elements. Nucl. Phys. A 944, 99 (2015).10.1016/j.nuclphysa.2015.06.009Search in Google Scholar
26. Neumayr, J., Beck, L., Habs, D., Heinz, S., Szerypo, J., Thirolf, P. G., Varentsov, V., Voit, F., Ackermann, D., Beck, D., Block, M., Di, Z., Eliseev, S. A., Geissel, H., Herfurth, F., Heßberger, F. P., Hofmann, S., Kluge, H.-J., Mukherjee, M., Muenzenberg, G., Petrick, M., Quint, W., Rahaman, S., Rauth, C., Rodriguez, D., Scheidenberger, C., Sikler, G., Wang, Z., Plass, W. R., Breitenfeld, M., Chaudhuri, A., Marx, G., Schweikhard, L., Dodonov, A. F., Novikov, Y., Suhonen, M.: The ion-catcher device for SHIPTRAP. Nucl. Instrum. Meth. B 244, 489 (2006).10.1016/j.nimb.2005.10.017Search in Google Scholar
27. Lautenschläger, F., Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Clark, A., Droese, C., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F. P., Kaleja, O., Khuyagbaatar, J., Kunz, P., Mistry, A. K., Laatiaoui, M., Lauth, W. Raeder, S., Walther, T., Wraith, C.: Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP. Nucl. Instrum. Meth. B 383, 115 (2016).10.1016/j.nimb.2016.06.001Search in Google Scholar
28. Block, M., Ackermann, D., Blaum, K., Droese, C., Dworschak, M., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plass, W. R., Popeko, A., Rahaman, S., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Weber, C.: Direct mass measurements above uranium bridge the gap to the island of stability. Nature 463, 785 (2010).10.1038/nature08774Search in Google Scholar PubMed
29. Minaya Ramirez, E., Ackermann, D., Blaum, K., Block, M., Droese, C., Düllmann, Ch.E., Dworschak, M., Eibach, M., Eliseev, S., Haettner, E., Herfurth, F., Heßberger, F. P., Hofmann, S., Ketelaer, J., Marx, G., Mazzocco, M., Nesterenko, D., Novikov, Yu. N., Plass, W. R., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Weber, C.: Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012).10.1126/science.1225636Search in Google Scholar PubMed
30. Ferrer, R., Barzakh, A., Bastin, B, Beerwerth, R., Block, M., Creemers, P., Grawe, H., de Groote, R., Delahaye, P., Fléchard, X., Franchoo, S., Fritzsche, S., Gaffney, L. P., Ghys, L., Gins, W., Granados, C., Heinke, R., Hijazi, L., Huyse, M., Lron, T. Kudryavtsev, Yu., Laatiaoui, M., Lecesne, N., Loiselet, M., Lutton, F., Moore, I. D., Martinez, Y., Mogilevskiy, E., Naubereit, P., Piot, J., Raeder, S. Rothe, S., Savajols, H., Sels, S., Sonnenschein, V., Thomas, J-C., Traykov, E., Van Beveren, C., Van den Bergh, P., Van Duppen, P., Wendt, K., Zadvornaya, A.: Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion. Nat. Commun. 8, 14520 (2017).10.1038/ncomms14520Search in Google Scholar PubMed PubMed Central
31. Laatiaoui, M., Lauth, W., Backe, H., Block, M., Ackermann, D., Cheal, B., Chhetri, P., Düllmann, Ch. E., van Duppen, P., Even, J., Ferrer, R, Giacoppo, F., Götz, S., Heßberger, F. P., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Lautenschläger, F., Mistry, A. M., Minaya Ramirez, E., Raeder, S., Walther, Th., Wraith, C., Yakushev, A.: Atom-at-a-time laser resonance ionization spectroscopy of nobelium. Nature 538, 495 (2016).10.1038/nature19345Search in Google Scholar PubMed
32. Droese, C., Eliseev, S., Blaum, K., Block, M., Herfurth, F., Laatiaoui, M, Lautenschläger, F., Minaya Ramirez, E., Schweikhard, L., Simon, V. V., Thirolf, P. G.: The cryogenic gas stopping cell of SHIPTRAP. Nucl. Instrum. Meth. B 338, 126 (2014).10.1016/j.nimb.2014.08.004Search in Google Scholar
33. Wense, L. v. d., Seiferle, B., Laatiaoui, M., Thirolf, P. G.: Determination of the extraction efficiency for 233U source α-recoil ions from the MLL buffer-gas stopping cell. Eur. Phys. J. A 51, 29 (2015).10.1140/epja/i2015-15029-8Search in Google Scholar
34. Mumpower, M., Surman, R., Fang, D. L., Beard, M., Möller, P., Kawano, T., Aprahamian A.: The impact of individual nuclear masses on r-process abundances. Phys. Rev. C 92, 035807 (2015).10.1103/PhysRevC.92.035807Search in Google Scholar
35. Blaum, K.: High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006).10.1016/j.physrep.2005.10.011Search in Google Scholar
36. Kluge, H.-J.: Penning trap mass spectrometry of radionuclides. Int. J. Mass Spectrom. 349, 26 (2013).10.1016/j.ijms.2013.04.017Search in Google Scholar
37. Wollnik, H.: History of mass measurements in time-of-flight mass analyzers. Int. J. Mass Spectrom. 349, 38 (2013).10.1016/j.ijms.2013.04.023Search in Google Scholar
38. Brown, L. S., Gabrielse, G.: Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986).10.1103/RevModPhys.58.233Search in Google Scholar
39. Kretzschmar, M.: Particle motion in a Penning trap. Eur. J. Phys. 12, 240 (1991).10.1088/0143-0807/12/5/010Search in Google Scholar
40. Myers, E. G.: The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectrom. 349, 107 (2013).10.1016/j.ijms.2013.03.018Search in Google Scholar
41. Bollen, G., Davies, D., Facina, M., Huikari, J., Kwan, E., Lofy, P. A., Morrissey, D. J., Prinke, A., Ringle, R., Savory, J., Schury, P., Schwarz, S., Sumithrarachchi, C., Sun, T., Weissman, L.: Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed β emitter 38Ca. Phys. Rev. Lett. 96, 152501 (2006).10.1103/PhysRevLett.96.152501Search in Google Scholar PubMed
42. Smith, M., Brodeur, M., Brunner, T., Ettenauer, S., Lapierre, A., Ringle, R., Ryjkov, V. L., Ames, F., Bricault, P., Drake, G. W. F., Delheij, P., Lunney, D., Sarazin, F., Dilling, J.: First Penning-trap mass measurement of the exotic halo nucleus 11Li. Phys. Rev. Lett. 101, 202501 (2008).10.1103/PhysRevLett.101.202501Search in Google Scholar PubMed
43. Eliseev, S., Blaum, K., Block, M., Droese, C., Goncharov, M., Minaya Ramirez, E., Nesterenko, D. A., Novikov, Yu. N., Schweikhard, L.: Phase-imaging ion-cyclotron-resonance measurements for short-lived nuclides. Phys. Rev. Lett. 110, 082501 (2013).10.1103/PhysRevLett.110.082501Search in Google Scholar PubMed
44. Eliseev, S., Blaum, K., Block, M., Chenmarev, S., Dorrer, H., Düllmann, Ch.E., Enss, C., Filianin, P.E., Gastaldo, L., Goncharov, M., Köster, U., Lautenschläger, F., Novikov, Yu.N., Rischka, A., Schüssler, R.X., Schweikhard, L., Türler A.: Direct measurement of the mass difference of 163Ho and 163Dy solves the Q-value puzzle for the neutrino mass determination. Phys. Rev. Lett. 115, 062501 (2015).10.1103/PhysRevLett.115.062501Search in Google Scholar PubMed
45. Vilen, M., Kelly, J.M., Kankainen, A., Brodeur, M., Aprahamian, A., Canete, L., Eronen, T., Jokinen, A., Kuta, T., Moore, I.D., Mumpower, M.R., Nesterenko, D.A., Penttilä, H., Pohjalainen, I., Porter, W.S., Rinta-Antila, S., Surman, R., Voss, A., Äystö J.: Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP: reduced neutron pairing and implications for r-process calculations. Phys. Rev. Lett. 120, 262701 (2018).10.1103/PhysRevLett.120.262701Search in Google Scholar PubMed
46. Orford, R., Vassh, N., Clark, J.A., McLaughlin, G.C., Mumpower, M.R., Savard, G., Surman, R., Aprahamian, A., Buchinger, F., Burkey, M.T., Gorelov, D.A. Hirsh, T.Y., Klimes, J.W., Morgan, G.E., Nystrom, A., Sharma, K.S.: Precision mass measurements of neutron-rich neodymium and samarium isotopes and their role in understanding rare-earth peak formation. Phys. Rev. Lett. 120, 262702 (2018).10.1103/PhysRevLett.120.262702Search in Google Scholar PubMed
47. Dworschak, M., Block, M., Ackermann, D., Audi, G., Blaum, K., Droese, C., Eliseev, S., Fleckenstein, T., Haettner, E., Herfurth, F., Heßberger, F., Hofmann, S., Ketelaer, J., Ketter, J., Kluge, H.-J., Marx, G., Mazzocco, M., Novikov, Yu. N., Plass, W. R., Popeko, A., Rahaman, S., Rodriguez, D., Scheidenberger, C., Schweikhard, L., Thirolf, P. G., Vorobyev, G. K., Wang, M., Weber, C.: Penning trap mass measurements on nobelium isotopes. Phys. Rev. C 81, 064312 (2010).10.1103/PhysRevC.81.064312Search in Google Scholar
48. Eibach, M., Beyer, T., Blaum, K., Block, M., Düllmann, Ch. E., Eberhardt, K., Grund, J., Nagy, Sz., Nitsche, H., Nörtershäuser, W., Renisch, D., Rykaczewski, K. P., Schneider, F., Smorra, C., Vieten, J., Wang, M., Wendt, K.: Direct high-precision mass measurements on Am-241, Am-243, Pu-244, and Cf-249. Phys. Rev. C 89, 064318 (2014).10.1103/PhysRevC.89.064318Search in Google Scholar
49. Ketelaer, J., Kraemer, J., Beck, D., Blaum, K., Block, M., Eberhardt, K., Eitel, G., Ferrer, R., Geppert, C., George, S., Herfurth, F., Ketter, J., Nagy, Sz., Neidherr, D., Neugart, R., Nörtershäuser, W., Repp, J., Smorra, C., Trautmann, N., Weber, C.: TRIGA-SPEC: a setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz. Nucl. Instrum. Meth. A 594, 162 (2008).10.1016/j.nima.2008.06.023Search in Google Scholar
50. Ito, Y., Schury, P., Wada, M., Arai, F., Haba, H., Hirayama, Y., Ishizawa, S., Kaji, D. Kimura, S., Koura, H., MacCormick, M., Miyatake, H., Moon, J. Y., Morimoto, K., Morita, K., Mukai, M., Murray, I., Niwase, T., Okada, K., Ozawa, O., Rosenbusch, M., Takamine, A., Tanaka, T., Watanabe, Y. X., Wollnik, H., Yamaki, S.: First direct mass measurements of nuclides around Z=100 with a multireflection time-of-flight mass spectrograph. Phys. Rev. Lett. 120, 152501 (2018).10.1103/PhysRevLett.120.152501Search in Google Scholar PubMed
51. Wang, M., Audi, G., Kondev, F. G., Huang, W. J., Naimi, S., Xu, X.: The AME2016 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 41, 030003 (2016).10.1088/1674-1137/41/3/030003Search in Google Scholar
52. Gates, J. M., Pang, G.K., Pore, J.L., Gregorich, K.E., Kwarsick, J.T., Savard, G., Esker, N.E., Kireeff Covo, M., Mogannam, M.J., Batchelder, J.C., Bleuel, D.L., Clark, R.M., Crawford, H.L., Fallon, P., Hubbard, K.K., Hurst, A.M., Kolaja, I.T., Macchiavelli, A.O., Morse, C., Orford, R., Phair, L., Stoyer, M.A.: First direct measurements of superheavy-element mass numbers. Phys. Rev. Lett. 121, 222501 (2018).10.1103/PhysRevLett.121.222501Search in Google Scholar PubMed
53. Neidherr, D., Audi, G., Beck, D., Blaum, K., Böhm, Ch., Breitenfeldt, M., Cakirli, R. B., Casten, R. F., George, S., Herfurth, F., Herlert, A., Kellerbauer, A., Kowalska, M., Lunney, D., Minaya-Ramirez, E., Naimi, S., Noah, E., Penescu, L., Rosenbusch, M., Schwarz, S., Schweikhard, L., Stora, T.: Discovery of 229Rn and the structure of the heaviest Rn and Ra isotopes from Penning-trap mass measurements. Phys. Rev. Lett. 102, 112501 (2009).10.1103/PhysRevLett.102.112501Search in Google Scholar PubMed
54. Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z≥104 in gas phase. Nucl. Phys. A 944, 640 (2015).10.1016/j.nuclphysa.2015.09.012Search in Google Scholar
55. Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z≥104 in liquid phase. Nucl. Phys. A 944, 614 (2015).10.1016/j.nuclphysa.2015.07.013Search in Google Scholar
56. Marsh, B., Day Goodacre, T., Sels, S., Tsunoda, Y., Andel, B., Andreyev, A. N., Althubiti, N. A., Atanasov, D., Barzakh, A. E., Billowes, J., Blaum, K., Cocolios, T. E., Cubiss, J. G., Dobaczewski, J., Farooq-Smith, G. J., Fedorov, D. V., Fedoseev, V. N., Flanagan, K. T., Gaffney, L. P., Ghys, L., Huyse, M., Kreim, S., Lunney, D., Lynch, K. M., Manea, V., Martinez Palenzuela, Y., Molkanov, P. L., Otsuka, T., Pastore, A., Rosenbusch, M., Rossel, R. E., Rothe, S., Schweikhard, L., Seliverstov, M. D., Spagnoletti, P., Van Beveren, C., Van Duppen, P., Veinhard, M., Verstraelen, E., Welker, A., Wendt, K., Wienholtz, F., Wolf, R. N., Zadvornaya, A., Zuber, K.: Characterization of the shape-staggering effect in mercury nuclei. Nat. Phys. 14, 1163 (2018).10.1038/s41567-018-0292-8Search in Google Scholar
57. Heyde, K., Wood, J. L.: Shape coexistence in atomic nuclei. Rev. Mod. Phys. 83, 1467 (2011).10.1103/RevModPhys.83.1467Search in Google Scholar
58. Backe, H., Hies, M., Kunz, H., Lauth, W., Curtze, O., Schwamb, P., Sewtz, M., Theobald, W., Zahn, R., Eberhardt, K., Trautmann, N., Habs, D., Repnow, R., Fricke, B.: Isotope shift measurements for superdeformed fission isomeric states. Phys. Rev. Lett. 80, 920 (1998).10.1103/PhysRevLett.80.920Search in Google Scholar
59. Chhetri, P., Ackermann, D., Backe, H., Block, M., Cheal, B., Droese, C., Düllmann, Ch.E., Even, J., Ferrer, R., Giacoppo, F., Götz, S., Heßberger, F., Huyse, M., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. M., Raeder, S., Van Duppen, P., Walther, Th., Yakushev, A., Zhang, Z.: Precision measurement of the first ionization potential of nobelium. Phys. Rev. Lett. 120, 263003 (2018).10.1103/PhysRevLett.120.263003Search in Google Scholar PubMed
60. Raeder, S., Ackermann, D., Backe, H., Beerwerth, R., Berengut, J. C., Block, M., Borschevsky, A., Cheal, B., Chhetri, P., Droese, C., Düllmann, Ch.E., Dzuba, V. A., Eliav, E., Even, J., Ferrer, R., Flambaum, V. V., Fritzsche, S., Giacoppo, F., Götz, S., Heßberger, F., Huyse, M., Kaldor, U., Kaleja, O., Khuyagbaatar, J., Kunz, P., Laatiaoui, M., Lautenschläger, F., Lauth, W., Lecesne, N., Lens, L., Minaya Ramirez, E., Mistry, A. M., Nazarewicz, W., Porsev, S. G., Safronova, M. S., Safronova, U. I., Schuetrumpf, B., Van Duppen, P., Walther, T., Wraith, C., Yakushev, A.: Probing sizes and shapes of nobelium isotopes by laser spectroscopy. Phys. Rev. Lett. 120, 232503 (2018).10.1103/PhysRevLett.120.232503Search in Google Scholar PubMed
61. Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U.: Predicted spectrum of atomic nobelium. Phys. Rev. A 75, 042514 (2007).10.1103/PhysRevA.75.042514Search in Google Scholar
62. Dzuba, V. A., Safronova, M. S., Safronova, U. I.: Atomic properties of superheavy elements No, Lr, and Rf. Phys. Rev. A: At. Mol. Opt. Phys. 90, 012504 (2014).10.1103/PhysRevA.90.012504Search in Google Scholar
63. Porsev, S. G., Safronova, M. S., Safronova, U. I., Dzuba, V. A., Flambaum, V. V.: Nobelium energy levels and hyperfine-structure constants. Phys. Rev. A 98, 052512 (2018).10.1103/PhysRevA.98.052512Search in Google Scholar
64. Schuetrumpf, B., Nazarewicz, W., Reinhard, P.-G.: Central depression in nucleonic densities: trend analysis in the nuclear density functional theory approach. Phys. Rev. C 96, 024306 (2017).10.1103/PhysRevC.96.024306Search in Google Scholar
65. Raeder S., Block, M., Chhetri, P., Ferrer, R., Kraemer, S., Kron, T., Laatiaoui, M., Nothhelfer, S., Schneider, F., Van Duppen, P., Verlinde, M., Verstraelen, E., Walther, Th., Zadvornaya, A.: A gas-jet apparatus for high-resolution laser spectroscopy on the heaviest elements at SHIP. Nucl. Instrum. Meth. B (2019). https://doi.org/10.1016/j.nimb.2019.05.016.10.1016/j.nimb.2019.05.016Search in Google Scholar
66. Borschevsky, A., Eliav, E., Vilkas, M. J., Ishikawa, Y., Kaldor, U.: Transition energies of atomic lawrencium. Eur. Phys. J. D. 45, 115 (2007).10.1140/epjd/e2007-00130-9Search in Google Scholar
67. Köhler, S., Deißenberger, R., Eberhardt, K., Erdmann, N., Herrmann, G., Huber, G., Kratz, J. V., Nunnemann, M., Passler, G., Rao, P. M., Riegel, J., Trautmann, N., Wendt, K.: Determination of the first ionization potential of actinide elements by resonance ionization mass spectroscopy. Spectrochim. Acta B 52, 717 (1997).10.1016/S0584-8547(96)01670-9Search in Google Scholar
68. Peterson, J. R., Erdmann, N., Nunnemann, M., Eberhardt, K., Huber, G., Kratz, J. V., Passler, G., Stetzer, O., Thörle, P., Trautmann, N., Waldek, A.: Determination of the first ionization potential of einsteinium by resonance ionization mass spectroscopy (RIMS). J. Alloys Compd. 876, 271, (1998).10.1016/S0925-8388(98)00238-2Search in Google Scholar
69. Wendt, K., Gottwald, T., Mattolat, C., Raeder, S.: Ionization potentials of the lanthanides and actinides – towards atomic spectroscopy of super-heavy elements. Hyperfine Interact. 227, 55 (2014).10.1007/s10751-014-1041-8Search in Google Scholar
70. Naubereit, P., Gottwald, T., Studer, D., Wendt, K.: Excited atomic energy levels in protactinium by resonance ionization spectroscopy. Phys. Rev. A 98, 022505 (2018).10.1103/PhysRevA.98.022505Search in Google Scholar
71. Sugar, J.: Revised ionization energies of the neutral actinides. J. Chem. Phys. 60, 4103 (1974).10.1063/1.1680874Search in Google Scholar
72. Sato, T. K., Asai, M., Borschevsky, A., Beerwerth, R., Kaneya, Y., Makii, H., Mitsukai, A., Nagame, Y., Osa, A., Toyoshima, A., Tsukada, K., Sakama, M., Shinsaku, T., Ooe, K., Sato, D., Shigekawa, Y., Ichikawa, S., Düllmann, Ch.E., Grund, J., Renisch, D., Kratz, J. V., Schaedel, M.: First ionization potentials of Fm, Md, No, and Lr: verification of filling-up of 5f electrons and confirmation of the actinide series. J. Am. Chem. Soc. 140, 14609 (2018).10.1021/jacs.8b09068Search in Google Scholar PubMed
73. Kramida, A., Ralchenko, Y., Reader, J.: NIST ASD Team: NIST Atomic Spectra Database (version 5.6.1), https://physics.nist.gov/asd [Tue Feb 12 2019]. National Institute of Standards and Technology, Gaithersburg, MD, USA (2018).Search in Google Scholar
74. Dzuba, V. A., Safronova, M. S., Safronova, U. I., Kramida, A.: Ionization potentials of superheavy elements No, Lr, and Rf and their ions. Phys. Rev. A 94, 042503 (2016).10.1103/PhysRevA.94.042503Search in Google Scholar PubMed PubMed Central
75. Dzuba, V. A.: Ionization potentials and polarizabilities of superheavy elements from Db to Cn (Z=105–112). Phys. Rev. A 93, 032519 (2016).10.1103/PhysRevA.93.032519Search in Google Scholar
76. Kramida, A. E.: A critical compilation of experimental data on spectral lines and energy levels of hydrogen, deuterium, and tritium. Atom Data Nucl. Data 96, 586 (2010).10.1016/j.adt.2010.05.001Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications