Abstract
Theoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6th one. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.
References
1. Mendellev, D. I.: Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Z. Chem. 12, 405 (1869).Suche in Google Scholar
2. Meyer, L.: Liebigs Ann. Chem. Suppl. 7, 354 (1870).Suche in Google Scholar
3. Bohr, N.: Über die Anwendung der Quantentheorie auf den Atombau: I. Die Grundpostulate der Quantentheorie. Z. f. Physik: 13, 117 (1923).10.1007/BF01328209Suche in Google Scholar
4. Pauli, W.: Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronmasse auf den Zeemaneffiekt, Z. f. Physik: 31, 373 (1925).10.1007/BF02980592Suche in Google Scholar
5. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. der Physik. 79(384), 361, 489 (1926).10.1002/andp.19263840602Suche in Google Scholar
6. Madelung, E.: Mathematische Hilfsmittel des Physikers. Springer, Berlin (1936).10.1007/978-3-662-02177-4Suche in Google Scholar
7. Dirac, P. A. M.: The quantum theory of the electron. In: Proceedings of the Royal Society of London. Series A. 117(778), 610 (1928).10.1016/B978-0-08-006995-1.50017-XSuche in Google Scholar
8. Swirles, B.: The relativistic self-consistent-field. Proc. Roy. Soc. London A 152, 625 (1935).10.1098/rspa.1935.0211Suche in Google Scholar
9. Grant, I. P.: Relativistic self-consistent fields. Proc. Roy. Soc. London 262, 555 (1961).10.1088/0370-1328/86/3/311Suche in Google Scholar
10. Grant, I. P.: Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer (2007).10.1007/978-0-387-35069-1Suche in Google Scholar
11. Waber, J. T., Cromer, D. T., Liberman, D.: SCF Dirac-slater calculations of the translawrencium elements. J. Chem. Phys. 51, 664 (1969).10.1063/1.1672054Suche in Google Scholar
12. Fricke, B., Greiner, W., Waber, J. T.: The continuation of the periodic table up to Z=172. The chemistry of superheavy elements. Theor. Chim. Acta 21, 235 (1971).10.1007/BF01172015Suche in Google Scholar
13. Desclaux, J. P.: Relativistic Dirac-Fock expectation values for atoms with Z=1 to Z=120. At. Data Nucl. Data Tables 12, 311 (1973).10.1016/0092-640X(73)90020-XSuche in Google Scholar
14. Fricke, B.: Superheavy elements. A prediction of their chemical and physical properties. Struct. Bond. 21, 89 (1975).10.1007/BFb0116498Suche in Google Scholar
15. Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).10.1142/9789812795953_0007Suche in Google Scholar
16. Seaborg, G. T.: Elements beyond 100, present status and future prospects. Ann. Rev. Nucl. Sci. 18, 53 (1968).10.1146/annurev.ns.18.120168.000413Suche in Google Scholar
17. Goldanskii, V. I., Polikanov, S. M.: The Transuranium Elements. Springer (1973).10.1007/978-1-4684-8381-9_1Suche in Google Scholar
18. Keller, Jr., O. L., Seaborg, G. T.: Chemistry of the transactinide elements. Ann. Rev. Nucl. Sci. 27, 139 (1977).10.1142/9789812795953_0055Suche in Google Scholar
19. Seaborg, G. T., Keller, O.L., Jr: Future elements. In: Katz, J. J. Seaborg, G. T., Morss (Eds.), The Chemistry of the Actinide Elements, 2nd Ed., Vol. 2, Chapman and Hall, London (1986), p. 1629.10.1007/978-94-009-3155-8_17Suche in Google Scholar
20. Seaborg, G. T.: Evolution of the modern periodic table. J. Chem. Soc. Dalton Trans. 3899 (1996).10.1039/dt9960003899Suche in Google Scholar
21. Hoffman, D. C., Lee D. M. and Pershina, V.: Transactinide elements and future elements. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, 3rd Ed., Springer, Dordrecht (2006), p. 1652.10.1007/1-4020-3598-5_14Suche in Google Scholar
22. Schädel, M., Shaughnessy, D. (Eds.): The Chemistry of the Superheavy Elements. Springer (2014).10.1007/978-3-642-37466-1Suche in Google Scholar
23. Schädel, M.: Chemistry of superheavy elements. Radiochim. Acta 100, 579 (2012).10.1524/ract.2012.1965Suche in Google Scholar
24. Kratz, J. V.: The impact of the properties of the heaviest elements on the chemical and physical sciences. Radiochim. Acta 100, 569 (2012).10.1524/ract.2012.1963Suche in Google Scholar
25. Schädel, M.: Chemistry of the superheavy elements. Phil. Trans. R. Soc. A 373, 20140191 (2015).10.1098/rsta.2014.0191Suche in Google Scholar PubMed
26. Türler A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).10.1021/cr3002438Suche in Google Scholar PubMed
27. Pitzer, K. S.: Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271 (1979).10.1142/9789812795960_0027Suche in Google Scholar
28. Pyykkö, P., Desclaux, J.-P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276 (1979).10.1021/ar50140a002Suche in Google Scholar
29. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).10.1021/cr00085a006Suche in Google Scholar
30. Hess, B. A. (Ed.): Relativistic Effects in Heavy-Element Chemistry and Physics. John Wiley & Sons, Ltd, West Sussex (2003).Suche in Google Scholar
31. Kaldor, U., Wilson, S. (Eds.): Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Kluwer, Dordrecht (2003).10.1007/978-94-017-0105-1Suche in Google Scholar
32. Schwerdtfeger, P. (Ed.): Relativistic Electronic Structure Theory, Parts I and II. Elsevier, Amsterdam (2002).Suche in Google Scholar
33. Pyykkö, P.: Relativistic effects in chemistry: more common that you thought. Annu. Rev. Phys. Chem. 63, 3 (2012).10.1146/annurev-physchem-032511-143755Suche in Google Scholar PubMed
34. Pyykkö, P.: The physics behind chemistry and the periodic table. Chem. Rev. 112, 371 (2012).10.1021/cr200042eSuche in Google Scholar PubMed
35. Pershina, V.: Electronic structure and properties of the transactinides and their compounds. Chem. Rev. 96, 1977 (1996).10.1021/cr941182gSuche in Google Scholar PubMed
36. Schwerdtfeger, P., Seth, M.: Relativistic effects on the superheavy elements. In: Encyclopedia on Calculational Chemistry, Vol. 4, Wiley, New York (1998), p. 2480.10.1002/0470845015.cra007Suche in Google Scholar
37. Pershina, V.: Electronic structure and chemistry of the heaviest elements. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.10.1007/978-1-4020-9975-5_11Suche in Google Scholar
38. Pershina, V.: Relativistic electronic structure studies on the heaviest elements. Radiochim. Acta 99, 459 (2011).10.1524/ract.2011.1855Suche in Google Scholar
39. Pershina, V.: Theoretical chemistry of the heaviest elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Chapter 3, Springer, p. 135 (2014).10.1007/978-3-642-37466-1_10Suche in Google Scholar
40. Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).10.1016/j.nuclphysa.2015.04.007Suche in Google Scholar
41. Pershina, V.: Theoretical chemistry of superheavy elements: support for experiment. EPJ Web of Conferences (Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements) 131, 07002 (2016).10.1051/epjconf/201613107002Suche in Google Scholar
42. Pershina, V.: Relativistic quantum chemistry for chemical identification of the superheavy elements. In: W. Liu (Ed.), Handbook of Relativistic Quantum Chemistry, Springer (2017), p. 857.10.1007/978-3-642-40766-6_35Suche in Google Scholar
43. Pyykkö, P., Tokman, M., Labzowsky, L.N.: Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys. Rev. A 57, R689 (1998).10.1103/PhysRevA.57.R689Suche in Google Scholar
44. Labzowsky, L. N., Goidenko, I.: QED theory of atoms. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 401.10.1016/S1380-7323(02)80034-6Suche in Google Scholar
45. Barysz, M., Ishikawa, Y. (Eds.): Relativistic Methods for Chemists. Springer, Dordrecht (2010).10.1007/978-1-4020-9975-5Suche in Google Scholar
46. Liu, W. (Ed.): Handbook of Relativistic Quantum Chemistry. Springer (2017).10.1007/978-3-642-40766-6Suche in Google Scholar
47. Eliav, E., Kaldor, U.: Four-component electronic structure methods. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.10.1007/978-1-4020-9975-5_7Suche in Google Scholar
48. Eliav, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).10.1016/j.nuclphysa.2015.06.017Suche in Google Scholar
49. Visscher, L.: Post Dirac-Fock –methods – electron correlation. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 291.10.1016/S1380-7323(02)80032-2Suche in Google Scholar
50. Saue, T.: Post Dirac-Fock-methods – properties. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 332.10.1016/S1380-7323(02)80033-4Suche in Google Scholar
51. Thierfelder, C., Schwerdtfeger, P.: Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms Phys. Rev. A 82, 062503 (2010).10.1103/PhysRevA.82.062503Suche in Google Scholar
52. Schwerdtfeger, P., Pasteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).10.1016/j.nuclphysa.2015.02.005Suche in Google Scholar
53. Barysz, M.: Two-component relativistic theories. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 165.10.1007/978-1-4020-9975-5_4Suche in Google Scholar
54. DIRAC package. Dirac, a relativistic ab initio electronic structure program, Release DIRAC08.0 (2008), written by Jensen, H. J. Aa., Saue, T. and Visscher, L. (http://dirac.chem.sdu.dk).Suche in Google Scholar
55. Dolg, M.: Relativistic effective core potentials. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 793.10.1016/S1380-7323(02)80040-1Suche in Google Scholar
56. Cao, X., Dolg, M.: Relativistic pseudopotentials. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 215.10.1007/978-1-4020-9975-5_6Suche in Google Scholar
57. Seijo, L., Barandiaran, Z.: Relativistic ab initio model potentials calculations for molecules and embedded clusters. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 417.10.1016/S1380-7323(04)80034-7Suche in Google Scholar
58. Lee, Y. L., Ermler, W. C., Pitzer, R. M.: Ab initio effective core potentials including rel-ativistic effects. I. Formalism and applications to the Xe and Au atoms. J. Chem. Phys. 67, 5861 (1977).10.1063/1.434793Suche in Google Scholar
59. Kohn, W., Becke, A. D., Parr, R. G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974 (1996).10.1021/jp960669lSuche in Google Scholar
60. Engel, E.: Relativistic density functional theory: foundations and basic formalizm. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 523.10.1016/S1380-7323(02)80036-XSuche in Google Scholar
61. Anton, J., Fricke, B., Engel, E.: Noncollinear and collinear relativistic density-functional program for electric and magnetic properties of molecules. Phys. Rev. A 69, 012505 (2004).10.1103/PhysRevA.69.012505Suche in Google Scholar
62. ADF, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands (www.scm.com).Suche in Google Scholar
63. Zvara, I. The Inorganic Radiochemistry of Heavy Elements. Springer, Dordrecht (2008).10.1007/978-1-4020-6602-3Suche in Google Scholar
64. Gäggeler, H. W., Türler, A.: Gas-phase chemistry. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 237.10.1007/0-306-48415-3_7Suche in Google Scholar
65. Türler, A., Gregorich, K.: Experimental techniques. In: M. Schädel (Ed.), The Chemistry of Superheavy Elements, Kluwer Academic Publishers, Dordrecht (2003), p. 117.10.1007/0-306-48415-3_4Suche in Google Scholar
66. Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z ≥ 104 in gas phase. Nucl. Phys. A 944, 640 (2015).10.1016/j.nuclphysa.2015.09.012Suche in Google Scholar
67. Türler, A.: Advances in chemical investigations of the heaviest elements. EPJ Web on Conferences, 131, 07001 (2016).10.1051/epjconf/201613107001Suche in Google Scholar
68. Kratz, J. V., Nagame, Y.: Liquid-phase chemistry of superheavy elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 309.10.1007/978-3-642-37466-1_6Suche in Google Scholar
69. Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z ≥ 104 in liquid phase. Nucl. Phys. A 944, 614 (2015).10.1016/j.nuclphysa.2015.07.013Suche in Google Scholar
70. Nagame, Y.: Chemical properties of rutherfordium (Rf) anddubnium (Db) in the aqueous phase. EPJ Web of Conferences, 131, 07007 (2016).10.1051/epjconf/201613107007Suche in Google Scholar
71. Desclaux, J. P., Fricke, B.: Relativistic prediction of the ground state of atomic lawrencium. J. Phys. 41, 943 (1980).10.1051/jphys:01980004109094300Suche in Google Scholar
72. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies of ytterbium, lutetium, lawrencium by relativistic coupled-cluster method. Phys. Rev. A 52, 291 (1995).10.1103/PhysRevA.52.291Suche in Google Scholar
73. Glebov, V. A., Kasztura, L., Nefedov, V. S., Zhuikov, B. L.: Is element 104 (kurchatovium) a p-element? II. Relativistic calculations of the electronic atomic structure. Radiochim. Acta 46, 117 (1989).10.1524/ract.1989.46.3.117Suche in Google Scholar
74. Johnson, E., Fricke, B., Keller, Jr., O. L., Nestor, Jr., C. W., Ticker, T. C.: Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac-Fock calculations. J. Chem. Phys. 93, 8041 (1990).10.1063/1.459334Suche in Google Scholar
75. Eliav, E., Kaldor, U., Ishikawa, Y.: Ground state electron configuration of Rutherfordium: role of dynamic correlation. Phys. Rev. Lett. 74, 1079 (1995).10.1103/PhysRevLett.74.1079Suche in Google Scholar PubMed
76. Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P., Nazarewicz, W.: Electron and nucleon localization functions of oganesson: approaching the thomas-fermi limit. Phys. Rev. Lett. 120, 053001 (2018).10.1103/PhysRevLett.120.053001Suche in Google Scholar PubMed
77. Nefedov, V. I., Trzhaskovskaya, M. B., Yarzhemcky, V. G.: Electronic configurations and the Periodic Table for superheavy elements. Doklady Phys. Chem. 408, 149 (2006).10.1134/S0012501606060029Suche in Google Scholar
78. Umemoto, K., Saito, S.: Electronic Configuration of superheavy elements. J. Phys. Soc. Jap. 65, 3175 (1996).10.1143/JPSJ.65.3175Suche in Google Scholar
79. Indelicato, P., Bieron, J., Jönnson, P.: Are MCDF calculations 101% correct in the superheavy element range? Theor. Chem. Acc. 129, 495 (2011).10.1007/s00214-010-0887-3Suche in Google Scholar
80. Pyykkö, P.: A suggested periodic table up to Z≤172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161 (2011).10.1039/C0CP01575JSuche in Google Scholar
81. Reinhardt, J., Greiner, W.: Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219 (1977).10.1088/0034-4885/40/3/001Suche in Google Scholar
82. Greiner, W., Zagrebaev, V. I.: The extension of the Periodic System: superheavy – superneutronic. Russ. Chem. Rev. 78, 1089 (2009).10.1070/RC2009v078n12ABEH004080Suche in Google Scholar
83. Johnson, E., Pershina, V., Fricke, B.: Ionization potentials of seaborgium. J. Phys. Chem. 103, 8458 (1999).10.1021/jp9903211Suche in Google Scholar
84. Johnson, E., Fricke, B., Jacob, T., Dong, C. Z., Fritzsche, S., Pershina, V.: Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J. Phys. Chem. 116, 1862 (2002).10.1063/1.1430256Suche in Google Scholar
85. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies in mercury and eka-mercury (elemenr 112) by the relativistic coupled-cluster method. Phys. Rev. A 52, 2765 (1995).10.1103/PhysRevA.52.2765Suche in Google Scholar
86. Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.:. Element 118: the first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350 (1996).10.1103/PhysRevLett.77.5350Suche in Google Scholar PubMed
87. Goidenko, I., Labsowsky, L., Eliav, E., Kaldor, U., Pyykkö, P.: QED corrections to the binding energy of the eka-radon (Z=118) negative ion. Phys. Rev. A 67, 020102(R) (2003).10.1103/PhysRevA.67.020102Suche in Google Scholar
88. Pyykkö, P., Riedel, S., Patzsche, M.: Triple-bond covalent radii. Chem. Eur. J. 11, 3511 (2005).10.1002/chem.200401299Suche in Google Scholar PubMed
89. Pyykkö, P., Atsumi, M.: Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186 (2009).10.1002/chem.200800987Suche in Google Scholar PubMed
90. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707 (2008).10.1063/1.2814242Suche in Google Scholar PubMed
91. Thierfelder, C., Assadollahzadeh, B., Schwerdtfeger, P., Schäfer, S., Schäfer, R.: Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z=114: Theory and experiment. Phys. Rev. A 78, 052506 (2008).10.1103/PhysRevA.78.052506Suche in Google Scholar
92. Schwerdtfeger, P.: Atomic static dipole polarizabilities. In: G. Maroulis (Ed.), Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, IOS Press, Amsterdam (2006), p. 1. Updated static dipole polarizabilities are available as pdf file from the CTCP website at Massey University: http://ctcp.massey.ac.nz/dipole-polarizabilities.10.1142/9781860948862_0001Suche in Google Scholar
93. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Electron affinity of element 114, with comparison to Sn and Pb. Chem. Phys. Lett. 480, 49 (2009).10.1016/j.cplett.2009.08.059Suche in Google Scholar
94. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio studies of atomic properties and experimental behaviour of element 119 and its lighter homologs. J Chem. Phys. 138, 124302 (2013).10.1063/1.4795433Suche in Google Scholar PubMed
95. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio predictions of Atomic Properties of Element 120 and its lighter group-2 Homologs. Phys. Rev. A, 87, 022502 (2013).10.1103/PhysRevA.87.022502Suche in Google Scholar
96. Lim, I. S., Schwerdtfeger, P., Metz, B., Stoll, H.: Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. J. Chem. Phys. 122, 194103 (2005).10.1103/PhysRevA.60.2822Suche in Google Scholar
97. Anton, J., Hirata, M., Fricke, B., Pershina, V.: Improved density functional calculations including magnetic effects for RfCl4 and its homologs. Chem. Phys. Lett. 380, 95 (2003).10.1016/j.cplett.2003.09.010Suche in Google Scholar
98. Lee, Y. S.: Two-component relativistic effective core potential calculations for molecules. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part II, Elsevier, Amsterdam (2002), p. 352.10.1016/S1380-7323(04)80033-5Suche in Google Scholar
99. Pershina, V., Borschevsky, A., Ilias, M.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. I. Electronic structure and properties of MCl4 and MOCl2 (M=Ti, Zr, Hf, and Rf). J. Chem. Phys. 141, 064314 (2014).10.1063/1.4891473Suche in Google Scholar
100. Pershina V, Borschevsky A, Ilias M. and Türler, A.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces. J. Chem. Phys. 141, 064315 (2014).10.1063/1.4891531Suche in Google Scholar
101. Pershina V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta and element 105, Db. J. Chem. Phys. 136, 034308 (2012).10.1063/1.3676176Suche in Google Scholar
102. Schädel, M., Brüchle, W., Dressler, R., Eichler, B., Gäggeler, H. W., Günther, R., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kratz, J. V., Paulus, W., Schumann, D., Timokhin, S., Trautmann, N., Türler, A., Wirth, G., Yakushev, A. B.: Chemical properties of element 106 (seaborgium). Nature (Letters) 388, 55 (1997).10.1038/40375Suche in Google Scholar
103. Türler, A., Brüchle, W., Dressler, R., Eichler, B., Eichler, R., Gäggeler, H. W., Gärtner, M., Glatz, J.-P., Gregorich, K. E., Hübener, S., Jost, D., Lebedev, T. Ya., Pershina, V., Schädel, M., Taut, S., Timokhin, N., Trautmann, N., Vahle, A., Yakushev, A. B.: First measurements of a thermochemical property of a seaborgium compound. Angew. Chem. Int. Ed. 38, 2212 (1999).10.1002/(SICI)1521-3773(19990802)38:15<2212::AID-ANIE2212>3.0.CO;2-6Suche in Google Scholar
104. Eichler, R., Brüchle, W., Dressler, R., Düllmann, Ch. E., Ei-chler, B., Gäggeler, H. W., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kirbach, U. W., Laue, C. A., La-vanchy, V. M., Nitsche, H., Patin, J. B., Piguet, D., Schädel, M., Shaughnessy, D. A., Strellis, D. A., Taut, S., Tobler, L., Tsyganov, Y. S., Türler, A., Vahle, A., Wilk, P. A., Yakushev, A. B.: Chemical characterization of bohrium (element 107). Nature 407, 63 (2000).10.1038/35024044Suche in Google Scholar
105. Pershina, V., Bastug, T., Fricke, B.: Relativistic effects on the electronic structure and volatility of group-8 tetroxides MO4, where M=Ru, Os, and element 108, Hs. J. Chem. Phys., 122, 124301 (2005).10.1063/1.1862241Suche in Google Scholar
106. Pershina, V.: Predictions of adsorption behaviour of the heaviest elements in a comparative study from the electronic structure calculations. Radiochim. Acta 93, 125 (2005).10.1524/ract.93.3.125.61612Suche in Google Scholar
107. Düllmann, Ch. E., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H. W., Ginter, T. N., Glaus, F., Gregorich, K., Hoffman, D. C., Jäger, E., Jost, D. T., Kirbach, U. W., Lee, D. E., Nitsche, H., Patin, J. B., Pershina, V., Piguet, D., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schött, H.J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S. N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A. B., Zielinski, P. M.: Chemical investigation of hassium (element 108). Nature 418, 859 (2002).10.1038/nature00980Suche in Google Scholar
108. Pershina, V., Anton, J., Jacob, T.: Fully-relativistic DFT calculations of the electronic structures of MO4 (M=Ru, Os, and element 108, Hs) and prediction of physisorption. Phys. Rev. A 78, 032518 (2008).10.1103/PhysRevA.78.032518Suche in Google Scholar
109. von Zweidorf, A., Angert, R., Brüchle, W., Bürger, S., Eberhartdt, K., Eichler, R., Hummrich, H., Jäger, E., Kling, H.-O., Kratz, J. V., Kuczewski, B., Langrock, G., Mendel, M., Rieth, U., Schädel, M., Schausten, B., Schimpf, E., Thörle, P., Trautmann, N., Tsukada, K., Wiehl, N., Wirth, G.: Evidence for the formation of sodium hassate(VIII). Radiochim. Acta 92, 855 (2004).10.1524/ract.92.12.855.55112Suche in Google Scholar
110. Pershina, V.: Theoretical investigations of the reactivity of MO4 and the electronic structure of Na2[MO4(OH)2], where M=Ru, Os, and Hs (element 108). Radiochim. Acta 93, 373 (2005).10.1524/ract.2005.93.7.373Suche in Google Scholar
111. Even, J., Yakushev, A., Düllmann, Ch. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Moritomo, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seborgium carbonyl complex. Science 345, 1491 (2014).10.1126/science.1255720Suche in Google Scholar PubMed
112. Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).10.1063/1.4802765Suche in Google Scholar PubMed
113. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Dullmann, C. E., Fangli, F., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T. K., Schadel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).10.1515/ract-2015-2445Suche in Google Scholar
114. Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).10.1515/ract-2015-2447Suche in Google Scholar
115. Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).10.1021/ja9928273Suche in Google Scholar
116. Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: metal−CO bonding revisited. Inorg. Chem. 56, 1638 (2017).10.1021/acs.inorgchem.6b02759Suche in Google Scholar PubMed
117. Frenking, G., Frohlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717 (2000).10.1021/cr980401lSuche in Google Scholar PubMed
118. Pershina, V., Iliaš, M.: Carbonyl compounds of Tc, Re and Bh: electronic structure, bonding and volatility. J. Chem. Phys. 149, 204306 (2018).10.1063/1.5055066Suche in Google Scholar
119. Pershina, V., Iliaš, M.: Penta- and tetracarbonyls of Ru, Os, and Hs: electronic structure, bonding, and volatility. J. Chem. Phys. 146, 184306 (2017).10.1063/1.4983125Suche in Google Scholar
120. Wang, Y., Qin, Z., Fan, F. L., Fan, F. Y., Cao, S.W., Wu, X. L., Zhang, X., Bai, J., Yin, X. J., Tian, L. L., Zhao, L., Tian, Z., Li, W., Tan, C. M., Guo, J. S., Gäggeler, H. W.: Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 102, 69 (2014).10.1515/ract-2014-2157Suche in Google Scholar
121. Wang, Y., Qin, Z., Fan, F.-L., Haba, H., Komori, Y., Cao, S.-W., Wu X.-L., Tan, C.-M.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17, 13228 (2015).10.1039/C5CP00979KSuche in Google Scholar
122. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hartmann, W., Hild, D., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Lommel, B., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D.: In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 102, 1093 (2014).10.1515/ract-2013-2198Suche in Google Scholar
123. Seth, M., Schwerdtfeger, P., Dolg, M., Faegri, K., Hess, B. A., Kaldor, U.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461 (1996).10.1016/0009-2614(96)00039-5Suche in Google Scholar
124. Pitzer, K. S.: Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032 (1975).10.1142/9789812795960_0020Suche in Google Scholar
125. Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114 (Voraussage). Kernenergie 10, 307 (1976).Suche in Google Scholar
126. Anton, J., Fricke, B., Schwerdtfeger, P.: Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem. Phys. 311, 97 (2005).10.1016/j.chemphys.2004.10.012Suche in Google Scholar
127. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Relativistic couple cluster study of diatomic compounds of Hg, Cn, and Fl. J. Chem. Phys. 141, 0843018 (2014).10.1063/1.4893347Suche in Google Scholar
128. Gaston, N., Opahle, I., Gäggeler, H. W., Schwerdtfeger, P.: Is Eka-Mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663 (2007).10.1002/anie.200604262Suche in Google Scholar PubMed
129. Gaston, N., Paulus, B., Rosciszewski, K., Schwerdtfeger, P., Stoll, H.: Lattice structure of mercury: influence of electronic correlation. Phys. Rev. B 74, 094102 (2006).10.1103/PhysRevB.74.094102Suche in Google Scholar
130. Zaoui, A., Fernat, M.: Unusual competition of structural phases and semi-conducting behaviour of bands in superheavy Copernicium. Sol. St. Comm. 152, 530 (2012).10.1016/j.ssc.2011.12.036Suche in Google Scholar
131. Atta-Fynn, R., Ray, A. K. Density functional theory Studies of condensed Phases of 6d super heavy elements. Sol. St. Comm. 201, 88 (2015).10.1016/j.ssc.2014.10.025Suche in Google Scholar
132. Gyanchandani, J., Sikka, S. K.: Super heavy element Copernicium: Cohesive and electronic properties revisited. Phys. Lett. A 376, 620 (2012).10.1016/j.ssc.2017.10.009Suche in Google Scholar
133. Steenbergen, K. G., Mewes, J.-M., Pašteka, L. F., Gäggeler, H. W., Kresse, G., Pahl, E., Schwerdtfeger, P.: The cohesive energy of superheavy element copernicium from accurate relativistic coupled-cluster theory. Phys. Chem. Chem. Phys. 19, 32286 (2017).10.1039/C7CP07203ASuche in Google Scholar
134. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Haenssler, F., Itkis, M. G., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Rasmussen, P., Shishkin, S. V., Shutov, S. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Chemical characterization of element 112. Nat. Lett. 447, 72 (2007).10.1038/nature05761Suche in Google Scholar PubMed
135. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, A. V., Itkis, M. G., Haenssler, F., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Y. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Shishkin, S. V., Serov, A. A., Shutov, A. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Thermochemical and physical properties of element 112. Angew. Chem. Int Ed. 47, 3262 (2008).10.1002/anie.200705019Suche in Google Scholar PubMed
136. Ionova, G. V., Pershina, V., Zuraeva, I. T., Suraeva, N. I.: Estimation of Trends in thermodynamic properties along the Transactinide Series: enthalpy of sublimation. Radiochem. 37, 282 (1995).Suche in Google Scholar
137. Pershina, V., Bastug, T.: Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem. Phys. 311, 139 (2005).10.1016/j.chemphys.2004.09.030Suche in Google Scholar
138. Pershina, V., Anton, J., Jacob, T.: Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J. Chem. Phys. 131, 084713 (2009).10.1063/1.3212449Suche in Google Scholar PubMed
139. Rykova, E. A., Zaitsevskii, A., Mosyagin, N. S.: Relativistic effective core potential calculations of Hg and eka-Hg (E112) interactions with gold: spin-orbit density functional theory modelling of Hg-Aun and E112-Aun systems. J. Chem. Phys. 125, 241102 (2006).10.1063/1.2403850Suche in Google Scholar PubMed
140. Rampino, S., Storchi, L., Belpassi, L.: Gold-superheavy-element interaction in diatomic and cluster adducts: a combined four-component Dirac-Kohn-Sham/charge displacement study. J. Chem. Phys. 143, 024307 (2015).10.1063/1.4926533Suche in Google Scholar PubMed
141. Pershina, V.: Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Inorg. Chem. 57, 3948 (2018).10.1021/acs.inorgchem.8b00101Suche in Google Scholar PubMed
142. Pershina, V.: A relativistic periodic DFT study on interaction of superheavy elements 112 (Cn) and 114 (Fl) and their homologs Hg and Pb, respectively, with a quartz surface. Phys. Chem. Chem. Phys. 18, 17750 (2016).10.1039/C6CP02253GSuche in Google Scholar PubMed
143. Choi, Y., Han, Y. K., Lee, Y. S.: The convergence of spin–orbit configuration interaction calculations for TlH and 113H. J. Chem. Phys. 115, 3448 (2001).10.1063/1.1389289Suche in Google Scholar
144. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. J. Chem. Phys. 133, 104304 (2010).10.1063/1.3476470Suche in Google Scholar PubMed
145. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. J. Chem. Phys. 132, 194314 (2010).10.1063/1.3425996Suche in Google Scholar PubMed
146. Fox-Beyer, B. S., van Wüllen, C.: Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem. Phys. 395, 95 (2012).10.1016/j.chemphys.2011.04.029Suche in Google Scholar
147. Rusakov, A. A., Demidov, Y. A., Zaitsevskii, A.: Estimating the adsorption energy of element 113 on a gold surface. Cent. Eur. J. Phys. 11, 1537 (2013).10.2478/s11534-013-0311-4Suche in Google Scholar
148. Pershina, V., Anton, J., Jacob, T.: Electronic structures and properties of MAu and MOH, where M=Tl and element 113. Chem. Phys. Lett. 480, 157 (2009).10.1016/j.cplett.2009.08.069Suche in Google Scholar
149. Pershina, V., Iliaš, M.: Electronic structure and properties of MAu and MOH, where M=Tl and Nh: New data. Chem. Phys. Lett. 694, 107 (2018).10.1016/j.cplett.2018.01.045Suche in Google Scholar
150. Pershina, V.: A theoretical study on the adsorption behavior of element 113 and its homolog Tl on a quartz surface: relativistic periodic DFT calculations. J. Phys. Chem. C 120, 20232 (2016).10.1021/acs.jpcc.6b07834Suche in Google Scholar
151. Dmitriev, S. N., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chelnokov, M. L., Chepygin, V. I., Eichler, R., Isaev, A. V., Katrasev, D. E., Lebedev, V. Ya., Malyshev, O. N., Petrushkin, O. V., Porobanuk, L. S., Ryabinin, M. A., Sabel’nikov, A. V., Sokol, E. A., Svirikhin, A. V., Starodub, G. Ya., Usoltsev, I., Vostokin, G. K., Yeremin, A. V.: Pioneering experiments on the chemical properties of element 113. Mendellev Commun. 24, 253 (2014).10.1016/j.mencom.2014.09.001Suche in Google Scholar
152. Serov, A. R., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., Gäggeler, H. W.: Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. Radiochim. Acta 101, 421 (2013).10.1524/ract.2013.2045Suche in Google Scholar
153. Aksenov, N. V., Steinegger, P., Abdullin, F. Sh., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Eichler, R., Lebedev, V. Ya., Madumarov, A. Sh., Malyshev, O. N., Petrushkin, O. V., Polyakov, A. N., Popov, Y. A., Sabel’nikov, A. V., Sagaidak, R. N., Shirokovsky, I. V., Shumeiko, M. V., Starodub, G. Ya., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K., Yeremin, A. V., Dmitriev, S. N.: On the volatility of nihonium (Nh, Z=113). Eur. Phys. J. A 53, 158 (5) (2017).10.1140/epja/i2017-12348-8Suche in Google Scholar
154. Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: a study of relativistic effects on bonding. J. Chem. Phys. 115, 2456 (2001).10.1063/1.1385366Suche in Google Scholar
155. Seth, M., Schwerdtfeger, P., Faegri, K.: The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds. J. Chem. Phys. 111, 6422 (1999).10.1063/1.480168Suche in Google Scholar
156. Liu, W., van Wüllen, Ch., Han, Y. K., Choi, Y. J., Lee, Y. S.: Spectroscopic constants of Pb and Eka-lead compounds: comparison of different approaches. Adv. Quant. Chem. 39, 325 (2001).10.1016/S0065-3276(05)39019-8Suche in Google Scholar
157. Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM′, where M=Ge, Sn, Pb, and element 114, and M′=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. J. Chem. Phys. 12, 134310(7) (2007).10.1063/1.2770712Suche in Google Scholar PubMed
158. Hermann, A., Furthmüller, J., Gäggeler, H.W., Schwerdtfeger, P.: Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).10.1103/PhysRevB.82.155116Suche in Google Scholar
159. Zaitsevskii, A., van Wüllen, C., Rykova, E. A.: Two-component relativistic density functional modeling of the adsorption of element 114 (eka-led) on gold. Phys. Chem. Chem. Phys. 12, 4152 (2010).10.1039/b923875aSuche in Google Scholar PubMed
160. Eichler, R., Aksenov, N. V., Albin, Yu. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Ya., Malyshev, O. N., Moody, K. J., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wittwer P. A., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).10.1524/ract.2010.1705Suche in Google Scholar
161. Yakushev, A., Gates, J. M., Türler, A., Schädel, M., Düllmann, C. E., Ackermann, D., Andersson, L.-L., Block, M., Brüchle, W., Dvorak, J., Eberhardt, K., Essel, H. G., Even, J., Forsberg, U., Gorshkov, A., Graeger, R., Gregorich, K. E., Hartmann, W., Herzberg, R.-D., Heßberger, F. P., Hild, D., Hübner, A., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kurz, N., Lommel, B., Niewisch, L. J., Nitsche, H., Omtvedt, J. P., Parr, E., Qin, Z., Rudolph, D., Runke, J., Schausten, B., Schimpf, E., Semchenkov, A., Steiner, J., Thörle-Pospiech, P., Uusitalo, J., Wegrzecki, M., Wiehl. N.: Superheavy element Flerovium (Element 114) is a volatile metal. Inorg. Chem. 53 (3), 1624 (2014).10.1021/ic4026766Suche in Google Scholar
162. Yakushev, A.: private communication, GSI, Darmstadt (2018).Suche in Google Scholar
163. Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state +4 in Group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493 (1998).10.1002/(SICI)1521-3773(19981002)37:18<2493::AID-ANIE2493>3.0.CO;2-FSuche in Google Scholar
164. Schwerdtfeger, P., Seth, M.: Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133 (2002).10.14494/jnrs2000.3.133Suche in Google Scholar
165. Nash, C. S., Bursten, B. E.: Spin-orbit effects on the electronic structure of heavy and superheavy hydrogen halides: prediction of an anomalously strong bond in H[117]. J. Phys. Chem. A 103, 632 (1999).10.1021/jp9843407Suche in Google Scholar
166. Schwerdtfeger, P.: Relativistic effects in molecular structure of s- and p-block elements. In: A. Domenicano, I. Hargittai (Eds.), Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, NATO Science Series, Kluwer, Dordrecht (2002), p. 169.10.1007/978-94-010-0546-3_9Suche in Google Scholar
167. Nash, C. S.: Atomic and molecular properties of elements 112, 114 and 118. J. Phys. Chem. A 109, 3493 (2005).10.1021/jp050736oSuche in Google Scholar
168. Pershina, V., to be published.Suche in Google Scholar
169. Schwerdtfeger, P.: Toward an accurate description of solid-state properties of superheavy elements. A case study for the element Og (Z=118). EPJ Web of Conferences 131, 07004 (2016).10.1051/epjconf/201613107004Suche in Google Scholar
170. Nash, C. S., Bursten, B. E.: Spin-orbit coupling versus the VSEPR method: on the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151 (1999).10.1002/(SICI)1521-3773(19990115)38:1/2<151::AID-ANIE151>3.0.CO;2-1Suche in Google Scholar
171. Han, Y.-K., Bae, C., Son, S.-K., Lee, Y. S.: Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118). J. Chem. Phys. 112, 2684 (2000).10.1063/1.480842Suche in Google Scholar
172. Pershina, V., Borschevsky, A., Anton, J.: Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem. Phys. 395, 87 (2012).10.1016/j.chemphys.2011.04.017Suche in Google Scholar
173. Pershina, V., Borschevsky, A., Anton, J.: Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. J. Chem. Phys. 136, 134317 (2012); See also Erratum: ibid 139, 239901 (2013).10.1063/1.3699232Suche in Google Scholar PubMed
174. Demidov, Y., Zaitsevskii, A., Eichler, R.: First principles based modelling of the adsorption of atoms of element 120 on a gold surface. Phys. Chem. Chem. Phys. 16, 2268 (2014).10.1039/c3cp54485kSuche in Google Scholar PubMed
175. Pyykkö, P.: Predicting new, simple inorganic species by quantum-chemical calculations: some successes. Phys. Chem. Chem. Phys. 14, 14734 (2012).10.1039/c2cp24003cSuche in Google Scholar PubMed
176. Ionova, G. V., Pershina, V., Johnson, E., Fricke, B., Schädel, M.: Redox reactions for group-5 elements, including element 105, in aqueous solutions. J. Phys. Chem. 96, 11096 (1992).10.1021/j100205a086Suche in Google Scholar
177. Pershina, V., Fricke, B.: Electronic structure and properties of the group 4, 5, and 6 highest chlorides including elements 104, 105, and 106. J. Phys. Chem. 98, 6468 (1994).10.1021/j100077a008Suche in Google Scholar
178. Pershina, V., Johnson, E., Fricke, B.: Theoretical estimates of redox potentials for group 6 elements, including element 106, seaborgium, in acid solutions. J. Phys. Chem. A 103, 8463 (1999).10.1021/jp990322tSuche in Google Scholar
179. Johnson, E., Fricke, B.: Prediction of some thermodynamic properties of selected compounds of element 104. J. Phys. Chem. 95, 7082 (1991).10.1021/j100171a067Suche in Google Scholar
180. Pershina, V., Fricke, B.: Electronic structure and chemistry of the heaviest elements. In: W. Greiner, R. K. Gupta (Eds.), Heavy Elements and Related New Phenomena, World Scientific, Singapore (1999), p. 194.10.1142/9789812816634_0006Suche in Google Scholar
181. Pershina, V.: Predictions of redox potentials of Sg in acid solutions as a function of pH. Radiochim. Acta 101, 749 (2013).10.1524/ract.2013.2121Suche in Google Scholar
182. Schädel, M., Brüchle, W., Jäger, E., Schausten, B., Wirth, G., Paulus, W., Günther, R., Eberhardt, K., Kratz, J. V., Seibert, A., Strub, E., Thörle, P., Trautmann, N., Waldek, W., Zauner, S., Schumann, D., Kirbach, U., Kubica, B., Misiak, R., Nagame, Y., Gregorich, K. E.: Aqueous chemistry of seaborgium (Z=106). Radiochim. Acta 83, 163 (1998).10.1524/ract.1998.83.3.163Suche in Google Scholar
183. Pershina, V., Trubert, D., Le Naour, C., Kratz, J. V.: Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869 (2002).10.1524/ract.2002.90.12_2002.869Suche in Google Scholar
184. Pershina, V., Polakova, D., Omtvedt, J. P.: Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions. Radiochim. Acta 94, 407 (2006).10.1524/ract.2006.94.8.407Suche in Google Scholar
185. Pershina, V.: Solution Chemistry of Element 105. Part I: Hydrolysis of Group 5 Cations: Nb, Ta, Ha and Pa. Radiochim. Acta 80, 65 (1998).10.1524/ract.1998.80.2.65Suche in Google Scholar
186. Pershina, V.: Solution chemistry of element 105. Part II: hydrolysis and complex formation of Nb, Ta, Ha and Pa in HCl solutions. Radiochim. Acta 80, 75 (1998).10.1524/ract.1998.80.2.75Suche in Google Scholar
187. Pershina, V., Kratz, J. V.: Solution chemistry of element 106: theoretical predictions of hydrolysis of group 6 cations Mo, W, and Sg. Inorg. Chem. 40, 776 (2001).10.1021/ic0003731Suche in Google Scholar PubMed
188. Pershina, V.: Theoretical treatment of the complexation of element 106, Sg, in HF solutions. Radiochim. Acta 92, 455 (2004).10.1524/ract.92.8.455.39279Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Artikel in diesem Heft
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications