Abstract
Theoretical chemical studies demonstrated crucial importance of relativistic effects in the physics and chemistry of superheavy elements (SHEs). Performed, with many of them, in a close link to the experimental research, those investigations have shown that relativistic effects determine periodicities in physical and chemical properties of the elements in the chemical groups and rows of the Periodic Table beyond the 6th one. They could, however, also lead to some deviations from the established trends, so that the predictive power of the Periodic Table in this area may be lost. Results of those studies are overviewed here, with comparison to the recent experimental investigations.
References
1. Mendellev, D. I.: Über die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Z. Chem. 12, 405 (1869).Search in Google Scholar
2. Meyer, L.: Liebigs Ann. Chem. Suppl. 7, 354 (1870).Search in Google Scholar
3. Bohr, N.: Über die Anwendung der Quantentheorie auf den Atombau: I. Die Grundpostulate der Quantentheorie. Z. f. Physik: 13, 117 (1923).10.1007/BF01328209Search in Google Scholar
4. Pauli, W.: Über den Einfluss der Geschwindigkeitsabhängigkeit der Elektronmasse auf den Zeemaneffiekt, Z. f. Physik: 31, 373 (1925).10.1007/BF02980592Search in Google Scholar
5. Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. der Physik. 79(384), 361, 489 (1926).10.1002/andp.19263840602Search in Google Scholar
6. Madelung, E.: Mathematische Hilfsmittel des Physikers. Springer, Berlin (1936).10.1007/978-3-662-02177-4Search in Google Scholar
7. Dirac, P. A. M.: The quantum theory of the electron. In: Proceedings of the Royal Society of London. Series A. 117(778), 610 (1928).10.1016/B978-0-08-006995-1.50017-XSearch in Google Scholar
8. Swirles, B.: The relativistic self-consistent-field. Proc. Roy. Soc. London A 152, 625 (1935).10.1098/rspa.1935.0211Search in Google Scholar
9. Grant, I. P.: Relativistic self-consistent fields. Proc. Roy. Soc. London 262, 555 (1961).10.1088/0370-1328/86/3/311Search in Google Scholar
10. Grant, I. P.: Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation, Springer (2007).10.1007/978-0-387-35069-1Search in Google Scholar
11. Waber, J. T., Cromer, D. T., Liberman, D.: SCF Dirac-slater calculations of the translawrencium elements. J. Chem. Phys. 51, 664 (1969).10.1063/1.1672054Search in Google Scholar
12. Fricke, B., Greiner, W., Waber, J. T.: The continuation of the periodic table up to Z=172. The chemistry of superheavy elements. Theor. Chim. Acta 21, 235 (1971).10.1007/BF01172015Search in Google Scholar
13. Desclaux, J. P.: Relativistic Dirac-Fock expectation values for atoms with Z=1 to Z=120. At. Data Nucl. Data Tables 12, 311 (1973).10.1016/0092-640X(73)90020-XSearch in Google Scholar
14. Fricke, B.: Superheavy elements. A prediction of their chemical and physical properties. Struct. Bond. 21, 89 (1975).10.1007/BFb0116498Search in Google Scholar
15. Seaborg, G. T.: The chemical and radioactive properties of the heavy elements. Chem. Eng. News 23, 2190 (1945).10.1142/9789812795953_0007Search in Google Scholar
16. Seaborg, G. T.: Elements beyond 100, present status and future prospects. Ann. Rev. Nucl. Sci. 18, 53 (1968).10.1146/annurev.ns.18.120168.000413Search in Google Scholar
17. Goldanskii, V. I., Polikanov, S. M.: The Transuranium Elements. Springer (1973).10.1007/978-1-4684-8381-9_1Search in Google Scholar
18. Keller, Jr., O. L., Seaborg, G. T.: Chemistry of the transactinide elements. Ann. Rev. Nucl. Sci. 27, 139 (1977).10.1142/9789812795953_0055Search in Google Scholar
19. Seaborg, G. T., Keller, O.L., Jr: Future elements. In: Katz, J. J. Seaborg, G. T., Morss (Eds.), The Chemistry of the Actinide Elements, 2nd Ed., Vol. 2, Chapman and Hall, London (1986), p. 1629.10.1007/978-94-009-3155-8_17Search in Google Scholar
20. Seaborg, G. T.: Evolution of the modern periodic table. J. Chem. Soc. Dalton Trans. 3899 (1996).10.1039/dt9960003899Search in Google Scholar
21. Hoffman, D. C., Lee D. M. and Pershina, V.: Transactinide elements and future elements. In: L. R. Morss, N. M. Edelstein, J. Fuger (Eds.), The Chemistry of the Actinide and Transactinide Elements, 3rd Ed., Springer, Dordrecht (2006), p. 1652.10.1007/1-4020-3598-5_14Search in Google Scholar
22. Schädel, M., Shaughnessy, D. (Eds.): The Chemistry of the Superheavy Elements. Springer (2014).10.1007/978-3-642-37466-1Search in Google Scholar
23. Schädel, M.: Chemistry of superheavy elements. Radiochim. Acta 100, 579 (2012).10.1524/ract.2012.1965Search in Google Scholar
24. Kratz, J. V.: The impact of the properties of the heaviest elements on the chemical and physical sciences. Radiochim. Acta 100, 569 (2012).10.1524/ract.2012.1963Search in Google Scholar
25. Schädel, M.: Chemistry of the superheavy elements. Phil. Trans. R. Soc. A 373, 20140191 (2015).10.1098/rsta.2014.0191Search in Google Scholar PubMed
26. Türler A., Pershina, V.: Advances in the production and chemistry of the heaviest elements. Chem. Rev. 113, 1237 (2013).10.1021/cr3002438Search in Google Scholar PubMed
27. Pitzer, K. S.: Relativistic effects on chemical properties. Acc. Chem. Res. 12, 271 (1979).10.1142/9789812795960_0027Search in Google Scholar
28. Pyykkö, P., Desclaux, J.-P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276 (1979).10.1021/ar50140a002Search in Google Scholar
29. Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563 (1988).10.1021/cr00085a006Search in Google Scholar
30. Hess, B. A. (Ed.): Relativistic Effects in Heavy-Element Chemistry and Physics. John Wiley & Sons, Ltd, West Sussex (2003).Search in Google Scholar
31. Kaldor, U., Wilson, S. (Eds.): Theoretical Chemistry and Physics of Heavy and Superheavy Elements. Kluwer, Dordrecht (2003).10.1007/978-94-017-0105-1Search in Google Scholar
32. Schwerdtfeger, P. (Ed.): Relativistic Electronic Structure Theory, Parts I and II. Elsevier, Amsterdam (2002).Search in Google Scholar
33. Pyykkö, P.: Relativistic effects in chemistry: more common that you thought. Annu. Rev. Phys. Chem. 63, 3 (2012).10.1146/annurev-physchem-032511-143755Search in Google Scholar PubMed
34. Pyykkö, P.: The physics behind chemistry and the periodic table. Chem. Rev. 112, 371 (2012).10.1021/cr200042eSearch in Google Scholar PubMed
35. Pershina, V.: Electronic structure and properties of the transactinides and their compounds. Chem. Rev. 96, 1977 (1996).10.1021/cr941182gSearch in Google Scholar PubMed
36. Schwerdtfeger, P., Seth, M.: Relativistic effects on the superheavy elements. In: Encyclopedia on Calculational Chemistry, Vol. 4, Wiley, New York (1998), p. 2480.10.1002/0470845015.cra007Search in Google Scholar
37. Pershina, V.: Electronic structure and chemistry of the heaviest elements. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.10.1007/978-1-4020-9975-5_11Search in Google Scholar
38. Pershina, V.: Relativistic electronic structure studies on the heaviest elements. Radiochim. Acta 99, 459 (2011).10.1524/ract.2011.1855Search in Google Scholar
39. Pershina, V.: Theoretical chemistry of the heaviest elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Chapter 3, Springer, p. 135 (2014).10.1007/978-3-642-37466-1_10Search in Google Scholar
40. Pershina, V.: Electronic structure and properties of superheavy elements. Nucl. Phys. A 944, 578 (2015).10.1016/j.nuclphysa.2015.04.007Search in Google Scholar
41. Pershina, V.: Theoretical chemistry of superheavy elements: support for experiment. EPJ Web of Conferences (Nobel Symposium NS160 – Chemistry and Physics of Heavy and Superheavy Elements) 131, 07002 (2016).10.1051/epjconf/201613107002Search in Google Scholar
42. Pershina, V.: Relativistic quantum chemistry for chemical identification of the superheavy elements. In: W. Liu (Ed.), Handbook of Relativistic Quantum Chemistry, Springer (2017), p. 857.10.1007/978-3-642-40766-6_35Search in Google Scholar
43. Pyykkö, P., Tokman, M., Labzowsky, L.N.: Estimated valence-level Lamb shifts for group 1 and group 11 metal atoms. Phys. Rev. A 57, R689 (1998).10.1103/PhysRevA.57.R689Search in Google Scholar
44. Labzowsky, L. N., Goidenko, I.: QED theory of atoms. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 401.10.1016/S1380-7323(02)80034-6Search in Google Scholar
45. Barysz, M., Ishikawa, Y. (Eds.): Relativistic Methods for Chemists. Springer, Dordrecht (2010).10.1007/978-1-4020-9975-5Search in Google Scholar
46. Liu, W. (Ed.): Handbook of Relativistic Quantum Chemistry. Springer (2017).10.1007/978-3-642-40766-6Search in Google Scholar
47. Eliav, E., Kaldor, U.: Four-component electronic structure methods. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 279.10.1007/978-1-4020-9975-5_7Search in Google Scholar
48. Eliav, E., Fritzsche, S., Kaldor, U.: Electronic structure theory of the superheavy elements. Nucl. Phys. A 944, 518 (2015).10.1016/j.nuclphysa.2015.06.017Search in Google Scholar
49. Visscher, L.: Post Dirac-Fock –methods – electron correlation. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 291.10.1016/S1380-7323(02)80032-2Search in Google Scholar
50. Saue, T.: Post Dirac-Fock-methods – properties. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 332.10.1016/S1380-7323(02)80033-4Search in Google Scholar
51. Thierfelder, C., Schwerdtfeger, P.: Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms Phys. Rev. A 82, 062503 (2010).10.1103/PhysRevA.82.062503Search in Google Scholar
52. Schwerdtfeger, P., Pasteka, L. F., Punnett, A., Bowman, P. O.: Relativistic and quantum electrodynamic effects in superheavy elements. Nucl. Phys. A 944, 551 (2015).10.1016/j.nuclphysa.2015.02.005Search in Google Scholar
53. Barysz, M.: Two-component relativistic theories. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 165.10.1007/978-1-4020-9975-5_4Search in Google Scholar
54. DIRAC package. Dirac, a relativistic ab initio electronic structure program, Release DIRAC08.0 (2008), written by Jensen, H. J. Aa., Saue, T. and Visscher, L. (http://dirac.chem.sdu.dk).Search in Google Scholar
55. Dolg, M.: Relativistic effective core potentials. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 793.10.1016/S1380-7323(02)80040-1Search in Google Scholar
56. Cao, X., Dolg, M.: Relativistic pseudopotentials. In: M. Barysz, Y. Ishikawa (Eds.), Relativistic Methods for Chemists, Springer, Dordrecht (2010), p. 215.10.1007/978-1-4020-9975-5_6Search in Google Scholar
57. Seijo, L., Barandiaran, Z.: Relativistic ab initio model potentials calculations for molecules and embedded clusters. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part I, Elsevier, Amsterdam (2002), p. 417.10.1016/S1380-7323(04)80034-7Search in Google Scholar
58. Lee, Y. L., Ermler, W. C., Pitzer, R. M.: Ab initio effective core potentials including rel-ativistic effects. I. Formalism and applications to the Xe and Au atoms. J. Chem. Phys. 67, 5861 (1977).10.1063/1.434793Search in Google Scholar
59. Kohn, W., Becke, A. D., Parr, R. G.: Density functional theory of electronic structure. J. Phys. Chem. 100, 12974 (1996).10.1021/jp960669lSearch in Google Scholar
60. Engel, E.: Relativistic density functional theory: foundations and basic formalizm. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Parts I, Elsevier, Amsterdam (2002), p. 523.10.1016/S1380-7323(02)80036-XSearch in Google Scholar
61. Anton, J., Fricke, B., Engel, E.: Noncollinear and collinear relativistic density-functional program for electric and magnetic properties of molecules. Phys. Rev. A 69, 012505 (2004).10.1103/PhysRevA.69.012505Search in Google Scholar
62. ADF, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands (www.scm.com).Search in Google Scholar
63. Zvara, I. The Inorganic Radiochemistry of Heavy Elements. Springer, Dordrecht (2008).10.1007/978-1-4020-6602-3Search in Google Scholar
64. Gäggeler, H. W., Türler, A.: Gas-phase chemistry. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 237.10.1007/0-306-48415-3_7Search in Google Scholar
65. Türler, A., Gregorich, K.: Experimental techniques. In: M. Schädel (Ed.), The Chemistry of Superheavy Elements, Kluwer Academic Publishers, Dordrecht (2003), p. 117.10.1007/0-306-48415-3_4Search in Google Scholar
66. Türler, A., Eichler, R., Yakushev, A.: Chemical studies of elements with Z ≥ 104 in gas phase. Nucl. Phys. A 944, 640 (2015).10.1016/j.nuclphysa.2015.09.012Search in Google Scholar
67. Türler, A.: Advances in chemical investigations of the heaviest elements. EPJ Web on Conferences, 131, 07001 (2016).10.1051/epjconf/201613107001Search in Google Scholar
68. Kratz, J. V., Nagame, Y.: Liquid-phase chemistry of superheavy elements. In: M. Schädel, D. Shaughnessy (Eds.), The Chemistry of the Superheavy Elements, Springer, (2014), p. 309.10.1007/978-3-642-37466-1_6Search in Google Scholar
69. Nagame, Y., Kratz, J. V., Schädel, M.: Chemical studies of elements with Z ≥ 104 in liquid phase. Nucl. Phys. A 944, 614 (2015).10.1016/j.nuclphysa.2015.07.013Search in Google Scholar
70. Nagame, Y.: Chemical properties of rutherfordium (Rf) anddubnium (Db) in the aqueous phase. EPJ Web of Conferences, 131, 07007 (2016).10.1051/epjconf/201613107007Search in Google Scholar
71. Desclaux, J. P., Fricke, B.: Relativistic prediction of the ground state of atomic lawrencium. J. Phys. 41, 943 (1980).10.1051/jphys:01980004109094300Search in Google Scholar
72. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies of ytterbium, lutetium, lawrencium by relativistic coupled-cluster method. Phys. Rev. A 52, 291 (1995).10.1103/PhysRevA.52.291Search in Google Scholar
73. Glebov, V. A., Kasztura, L., Nefedov, V. S., Zhuikov, B. L.: Is element 104 (kurchatovium) a p-element? II. Relativistic calculations of the electronic atomic structure. Radiochim. Acta 46, 117 (1989).10.1524/ract.1989.46.3.117Search in Google Scholar
74. Johnson, E., Fricke, B., Keller, Jr., O. L., Nestor, Jr., C. W., Ticker, T. C.: Ionization potentials and radii of atoms and ions of element 104 (unnilquadium) and of hafnium (2+) derived from multiconfiguration Dirac-Fock calculations. J. Chem. Phys. 93, 8041 (1990).10.1063/1.459334Search in Google Scholar
75. Eliav, E., Kaldor, U., Ishikawa, Y.: Ground state electron configuration of Rutherfordium: role of dynamic correlation. Phys. Rev. Lett. 74, 1079 (1995).10.1103/PhysRevLett.74.1079Search in Google Scholar PubMed
76. Jerabek, P., Schuetrumpf, B., Schwerdtfeger, P., Nazarewicz, W.: Electron and nucleon localization functions of oganesson: approaching the thomas-fermi limit. Phys. Rev. Lett. 120, 053001 (2018).10.1103/PhysRevLett.120.053001Search in Google Scholar PubMed
77. Nefedov, V. I., Trzhaskovskaya, M. B., Yarzhemcky, V. G.: Electronic configurations and the Periodic Table for superheavy elements. Doklady Phys. Chem. 408, 149 (2006).10.1134/S0012501606060029Search in Google Scholar
78. Umemoto, K., Saito, S.: Electronic Configuration of superheavy elements. J. Phys. Soc. Jap. 65, 3175 (1996).10.1143/JPSJ.65.3175Search in Google Scholar
79. Indelicato, P., Bieron, J., Jönnson, P.: Are MCDF calculations 101% correct in the superheavy element range? Theor. Chem. Acc. 129, 495 (2011).10.1007/s00214-010-0887-3Search in Google Scholar
80. Pyykkö, P.: A suggested periodic table up to Z≤172, based on Dirac-Fock calculations on atoms and ions. Phys. Chem. Chem. Phys. 13, 161 (2011).10.1039/C0CP01575JSearch in Google Scholar
81. Reinhardt, J., Greiner, W.: Quantum electrodynamics of strong fields. Rep. Prog. Phys. 40, 219 (1977).10.1088/0034-4885/40/3/001Search in Google Scholar
82. Greiner, W., Zagrebaev, V. I.: The extension of the Periodic System: superheavy – superneutronic. Russ. Chem. Rev. 78, 1089 (2009).10.1070/RC2009v078n12ABEH004080Search in Google Scholar
83. Johnson, E., Pershina, V., Fricke, B.: Ionization potentials of seaborgium. J. Phys. Chem. 103, 8458 (1999).10.1021/jp9903211Search in Google Scholar
84. Johnson, E., Fricke, B., Jacob, T., Dong, C. Z., Fritzsche, S., Pershina, V.: Ionization potentials and radii of neutral and ionized species of elements 107 (bohrium) and 108 (hassium) from extended multiconfiguration Dirac-Fock calculations. J. Phys. Chem. 116, 1862 (2002).10.1063/1.1430256Search in Google Scholar
85. Eliav, E., Kaldor, U., Ishikawa, Y.: Transition energies in mercury and eka-mercury (elemenr 112) by the relativistic coupled-cluster method. Phys. Rev. A 52, 2765 (1995).10.1103/PhysRevA.52.2765Search in Google Scholar
86. Eliav, E., Kaldor, U., Ishikawa, Y., Pyykkö, P.:. Element 118: the first rare gas with an electron affinity. Phys. Rev. Lett. 77, 5350 (1996).10.1103/PhysRevLett.77.5350Search in Google Scholar PubMed
87. Goidenko, I., Labsowsky, L., Eliav, E., Kaldor, U., Pyykkö, P.: QED corrections to the binding energy of the eka-radon (Z=118) negative ion. Phys. Rev. A 67, 020102(R) (2003).10.1103/PhysRevA.67.020102Search in Google Scholar
88. Pyykkö, P., Riedel, S., Patzsche, M.: Triple-bond covalent radii. Chem. Eur. J. 11, 3511 (2005).10.1002/chem.200401299Search in Google Scholar PubMed
89. Pyykkö, P., Atsumi, M.: Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186 (2009).10.1002/chem.200800987Search in Google Scholar PubMed
90. Pershina, V., Borschevsky, A., Eliav, E., Kaldor, U.: Prediction of the adsorption behavior of elements 112 and 114 on inert surfaces from ab initio Dirac-Coulomb atomic calculations. J. Chem. Phys. 128, 024707 (2008).10.1063/1.2814242Search in Google Scholar PubMed
91. Thierfelder, C., Assadollahzadeh, B., Schwerdtfeger, P., Schäfer, S., Schäfer, R.: Relativistic and electron correlation effects in static dipole polarizabilities for the group-14 elements from carbon to element Z=114: Theory and experiment. Phys. Rev. A 78, 052506 (2008).10.1103/PhysRevA.78.052506Search in Google Scholar
92. Schwerdtfeger, P.: Atomic static dipole polarizabilities. In: G. Maroulis (Ed.), Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, IOS Press, Amsterdam (2006), p. 1. Updated static dipole polarizabilities are available as pdf file from the CTCP website at Massey University: http://ctcp.massey.ac.nz/dipole-polarizabilities.10.1142/9781860948862_0001Search in Google Scholar
93. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Electron affinity of element 114, with comparison to Sn and Pb. Chem. Phys. Lett. 480, 49 (2009).10.1016/j.cplett.2009.08.059Search in Google Scholar
94. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio studies of atomic properties and experimental behaviour of element 119 and its lighter homologs. J Chem. Phys. 138, 124302 (2013).10.1063/1.4795433Search in Google Scholar PubMed
95. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Ab initio predictions of Atomic Properties of Element 120 and its lighter group-2 Homologs. Phys. Rev. A, 87, 022502 (2013).10.1103/PhysRevA.87.022502Search in Google Scholar
96. Lim, I. S., Schwerdtfeger, P., Metz, B., Stoll, H.: Relativistic coupled-cluster static dipole polarizabilities of the alkali metals from Li to element 119. J. Chem. Phys. 122, 194103 (2005).10.1103/PhysRevA.60.2822Search in Google Scholar
97. Anton, J., Hirata, M., Fricke, B., Pershina, V.: Improved density functional calculations including magnetic effects for RfCl4 and its homologs. Chem. Phys. Lett. 380, 95 (2003).10.1016/j.cplett.2003.09.010Search in Google Scholar
98. Lee, Y. S.: Two-component relativistic effective core potential calculations for molecules. In: P. Schwerdtfeger (Ed.), Relativistic Electronic Structure Theory, Part II, Elsevier, Amsterdam (2002), p. 352.10.1016/S1380-7323(04)80033-5Search in Google Scholar
99. Pershina, V., Borschevsky, A., Ilias, M.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. I. Electronic structure and properties of MCl4 and MOCl2 (M=Ti, Zr, Hf, and Rf). J. Chem. Phys. 141, 064314 (2014).10.1063/1.4891473Search in Google Scholar
100. Pershina V, Borschevsky A, Ilias M. and Türler, A.: Theoretical predictions of properties and volatility of chlorides and oxychlorides of group-4 elements. II. Adsorption of tetrachlorides and oxydichlorides of Zr, Hf, and Rf on neutral and modified surfaces. J. Chem. Phys. 141, 064315 (2014).10.1063/1.4891531Search in Google Scholar
101. Pershina V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of bromides of group-5 elements Nb, Ta and element 105, Db. J. Chem. Phys. 136, 034308 (2012).10.1063/1.3676176Search in Google Scholar
102. Schädel, M., Brüchle, W., Dressler, R., Eichler, B., Gäggeler, H. W., Günther, R., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kratz, J. V., Paulus, W., Schumann, D., Timokhin, S., Trautmann, N., Türler, A., Wirth, G., Yakushev, A. B.: Chemical properties of element 106 (seaborgium). Nature (Letters) 388, 55 (1997).10.1038/40375Search in Google Scholar
103. Türler, A., Brüchle, W., Dressler, R., Eichler, B., Eichler, R., Gäggeler, H. W., Gärtner, M., Glatz, J.-P., Gregorich, K. E., Hübener, S., Jost, D., Lebedev, T. Ya., Pershina, V., Schädel, M., Taut, S., Timokhin, N., Trautmann, N., Vahle, A., Yakushev, A. B.: First measurements of a thermochemical property of a seaborgium compound. Angew. Chem. Int. Ed. 38, 2212 (1999).10.1002/(SICI)1521-3773(19990802)38:15<2212::AID-ANIE2212>3.0.CO;2-6Search in Google Scholar
104. Eichler, R., Brüchle, W., Dressler, R., Düllmann, Ch. E., Ei-chler, B., Gäggeler, H. W., Gregorich, K. E., Hoffman, D. C., Hübener, S., Jost, D. T., Kirbach, U. W., Laue, C. A., La-vanchy, V. M., Nitsche, H., Patin, J. B., Piguet, D., Schädel, M., Shaughnessy, D. A., Strellis, D. A., Taut, S., Tobler, L., Tsyganov, Y. S., Türler, A., Vahle, A., Wilk, P. A., Yakushev, A. B.: Chemical characterization of bohrium (element 107). Nature 407, 63 (2000).10.1038/35024044Search in Google Scholar
105. Pershina, V., Bastug, T., Fricke, B.: Relativistic effects on the electronic structure and volatility of group-8 tetroxides MO4, where M=Ru, Os, and element 108, Hs. J. Chem. Phys., 122, 124301 (2005).10.1063/1.1862241Search in Google Scholar
106. Pershina, V.: Predictions of adsorption behaviour of the heaviest elements in a comparative study from the electronic structure calculations. Radiochim. Acta 93, 125 (2005).10.1524/ract.93.3.125.61612Search in Google Scholar
107. Düllmann, Ch. E., Brüchle, W., Dressler, R., Eberhardt, K., Eichler, B., Eichler, R., Gäggeler, H. W., Ginter, T. N., Glaus, F., Gregorich, K., Hoffman, D. C., Jäger, E., Jost, D. T., Kirbach, U. W., Lee, D. E., Nitsche, H., Patin, J. B., Pershina, V., Piguet, D., Qin, Z., Schädel, M., Schausten, B., Schimpf, E., Schött, H.J., Soverna, S., Sudowe, R., Thörle, P., Timokhin, S. N., Trautmann, N., Türler, A., Vahle, A., Wirth, G., Yakushev, A. B., Zielinski, P. M.: Chemical investigation of hassium (element 108). Nature 418, 859 (2002).10.1038/nature00980Search in Google Scholar
108. Pershina, V., Anton, J., Jacob, T.: Fully-relativistic DFT calculations of the electronic structures of MO4 (M=Ru, Os, and element 108, Hs) and prediction of physisorption. Phys. Rev. A 78, 032518 (2008).10.1103/PhysRevA.78.032518Search in Google Scholar
109. von Zweidorf, A., Angert, R., Brüchle, W., Bürger, S., Eberhartdt, K., Eichler, R., Hummrich, H., Jäger, E., Kling, H.-O., Kratz, J. V., Kuczewski, B., Langrock, G., Mendel, M., Rieth, U., Schädel, M., Schausten, B., Schimpf, E., Thörle, P., Trautmann, N., Tsukada, K., Wiehl, N., Wirth, G.: Evidence for the formation of sodium hassate(VIII). Radiochim. Acta 92, 855 (2004).10.1524/ract.92.12.855.55112Search in Google Scholar
110. Pershina, V.: Theoretical investigations of the reactivity of MO4 and the electronic structure of Na2[MO4(OH)2], where M=Ru, Os, and Hs (element 108). Radiochim. Acta 93, 373 (2005).10.1524/ract.2005.93.7.373Search in Google Scholar
111. Even, J., Yakushev, A., Düllmann, Ch. E., Haba, H., Asai, M., Sato, T. K., Brand, H., Di Nitto, A., Eichler, R., Fan, F. L., Hartmann, W., Huang, M., Jäger, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Moritomo, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Qin, Z., Schädel, M., Steiner, J., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Türler, A., Usoltsev, I., Wakabayashi, Y., Wang, Y., Wiehl, N., Yamaki, S.: Synthesis and detection of a seborgium carbonyl complex. Science 345, 1491 (2014).10.1126/science.1255720Search in Google Scholar PubMed
112. Pershina, V., Anton, J.: Theoretical predictions of properties and gas-phase chromatography behaviour of carbonyl complexes of group-6 elements Cr, Mo, W, and element 106, Sg. J. Chem. Phys. 138, 174301 (2013).10.1063/1.4802765Search in Google Scholar PubMed
113. Usoltsev, I., Eichler, R., Wang, Y., Even, J., Yakushev, A., Haba, H., Asai, M., Brand, H., Di Nitto, A., Dullmann, C. E., Fangli, F., Hartmann, W., Huang, M., Jager, E., Kaji, D., Kanaya, J., Kaneya, Y., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kudou, Y., Kurz, N., Lommel, B., Miyashita, S., Morimoto, K., Morita, K., Murakami, M., Nagame, Y., Nitsche, H., Ooe, K., Sato, T. K., Schadel, M., Steiner, J., Steinegger, P., Sumita, T., Takeyama, M., Tanaka, K., Toyoshima, A., Tsukada, K., Turler, A., Wakabayashi, Y., Wiehl, N., Yamaki, S., Qin, Z.: Decomposition studies of group 6 hexacarbonyl complexes. Part 1: Production and decomposition of Mo(CO)6 and W(CO)6. Radiochim. Acta 104, 141 (2016).10.1515/ract-2015-2445Search in Google Scholar
114. Usoltsev, I., Eichler, R., Türler, A.: Decomposition studies of group 6 hexacarbonyl complexes. Part 2: Modelling of the decomposition process. Radiochim. Acta 104, 531 (2016).10.1515/ract-2015-2447Search in Google Scholar
115. Nash, C. S., Bursten, B. E.: Prediction of the bond lengths, vibrational frequencies, and bond dissociation energy of octahedral seaborgium hexacarbonyl, Sg(CO)6. J. Am. Chem. Soc. 121, 10830 (1999).10.1021/ja9928273Search in Google Scholar
116. Iliaš, M., Pershina, V.: Hexacarbonyls of Mo, W, and Sg: metal−CO bonding revisited. Inorg. Chem. 56, 1638 (2017).10.1021/acs.inorgchem.6b02759Search in Google Scholar PubMed
117. Frenking, G., Frohlich, N.: The nature of the bonding in transition-metal compounds. Chem. Rev. 100, 717 (2000).10.1021/cr980401lSearch in Google Scholar PubMed
118. Pershina, V., Iliaš, M.: Carbonyl compounds of Tc, Re and Bh: electronic structure, bonding and volatility. J. Chem. Phys. 149, 204306 (2018).10.1063/1.5055066Search in Google Scholar
119. Pershina, V., Iliaš, M.: Penta- and tetracarbonyls of Ru, Os, and Hs: electronic structure, bonding, and volatility. J. Chem. Phys. 146, 184306 (2017).10.1063/1.4983125Search in Google Scholar
120. Wang, Y., Qin, Z., Fan, F. L., Fan, F. Y., Cao, S.W., Wu, X. L., Zhang, X., Bai, J., Yin, X. J., Tian, L. L., Zhao, L., Tian, Z., Li, W., Tan, C. M., Guo, J. S., Gäggeler, H. W.: Gas-phase chemistry of Mo, Ru, W, and Os metal carbonyl complexes. Radiochim. Acta 102, 69 (2014).10.1515/ract-2014-2157Search in Google Scholar
121. Wang, Y., Qin, Z., Fan, F.-L., Haba, H., Komori, Y., Cao, S.-W., Wu X.-L., Tan, C.-M.: Gas-phase chemistry of technetium carbonyl complexes. Phys. Chem. Chem. Phys. 17, 13228 (2015).10.1039/C5CP00979KSearch in Google Scholar
122. Even, J., Yakushev, A., Düllmann, Ch. E., Dvorak, J., Eichler, R., Gothe, O., Hartmann, W., Hild, D., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Lommel, B., Niewisch, L., Nitsche, H., Pysmenetska, I., Schädel, M., Schausten, B., Türler, A., Wiehl, N., Wittwer, D.: In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes. Radiochim. Acta 102, 1093 (2014).10.1515/ract-2013-2198Search in Google Scholar
123. Seth, M., Schwerdtfeger, P., Dolg, M., Faegri, K., Hess, B. A., Kaldor, U.: Large relativistic effects in molecular properties of the hydride of superheavy element 111. Chem. Phys. Lett. 250, 461 (1996).10.1016/0009-2614(96)00039-5Search in Google Scholar
124. Pitzer, K. S.: Are elements 112, 114, and 118 relatively inert gases? J. Chem. Phys. 63, 1032 (1975).10.1142/9789812795960_0020Search in Google Scholar
125. Eichler, B.: Das Flüchtigkeitsverhalten von Transactiniden im Bereich um Z=114 (Voraussage). Kernenergie 10, 307 (1976).Search in Google Scholar
126. Anton, J., Fricke, B., Schwerdtfeger, P.: Non-collinear and collinear four-component relativistic molecular density functional calculations. Chem. Phys. 311, 97 (2005).10.1016/j.chemphys.2004.10.012Search in Google Scholar
127. Borschevsky, A., Pershina, V., Eliav, E., Kaldor, U.: Relativistic couple cluster study of diatomic compounds of Hg, Cn, and Fl. J. Chem. Phys. 141, 0843018 (2014).10.1063/1.4893347Search in Google Scholar
128. Gaston, N., Opahle, I., Gäggeler, H. W., Schwerdtfeger, P.: Is Eka-Mercury (element 112) a group 12 metal? Angew. Chem. Int. Ed. 46, 1663 (2007).10.1002/anie.200604262Search in Google Scholar PubMed
129. Gaston, N., Paulus, B., Rosciszewski, K., Schwerdtfeger, P., Stoll, H.: Lattice structure of mercury: influence of electronic correlation. Phys. Rev. B 74, 094102 (2006).10.1103/PhysRevB.74.094102Search in Google Scholar
130. Zaoui, A., Fernat, M.: Unusual competition of structural phases and semi-conducting behaviour of bands in superheavy Copernicium. Sol. St. Comm. 152, 530 (2012).10.1016/j.ssc.2011.12.036Search in Google Scholar
131. Atta-Fynn, R., Ray, A. K. Density functional theory Studies of condensed Phases of 6d super heavy elements. Sol. St. Comm. 201, 88 (2015).10.1016/j.ssc.2014.10.025Search in Google Scholar
132. Gyanchandani, J., Sikka, S. K.: Super heavy element Copernicium: Cohesive and electronic properties revisited. Phys. Lett. A 376, 620 (2012).10.1016/j.ssc.2017.10.009Search in Google Scholar
133. Steenbergen, K. G., Mewes, J.-M., Pašteka, L. F., Gäggeler, H. W., Kresse, G., Pahl, E., Schwerdtfeger, P.: The cohesive energy of superheavy element copernicium from accurate relativistic coupled-cluster theory. Phys. Chem. Chem. Phys. 19, 32286 (2017).10.1039/C7CP07203ASearch in Google Scholar
134. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Haenssler, F., Itkis, M. G., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Rasmussen, P., Shishkin, S. V., Shutov, S. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Chemical characterization of element 112. Nat. Lett. 447, 72 (2007).10.1038/nature05761Search in Google Scholar PubMed
135. Eichler, R., Aksenov, N. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, A. V., Itkis, M. G., Haenssler, F., Laube, A., Lebedev, V. Ya., Malyshev, O. N., Oganessian, Y. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Shishkin, S. V., Serov, A. A., Shutov, A. V., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Yeremin, A. V.: Thermochemical and physical properties of element 112. Angew. Chem. Int Ed. 47, 3262 (2008).10.1002/anie.200705019Search in Google Scholar PubMed
136. Ionova, G. V., Pershina, V., Zuraeva, I. T., Suraeva, N. I.: Estimation of Trends in thermodynamic properties along the Transactinide Series: enthalpy of sublimation. Radiochem. 37, 282 (1995).Search in Google Scholar
137. Pershina, V., Bastug, T.: Relativistic effects on experimentally studied gas-phase properties of the heaviest elements. Chem. Phys. 311, 139 (2005).10.1016/j.chemphys.2004.09.030Search in Google Scholar
138. Pershina, V., Anton, J., Jacob, T.: Theoretical predictions of adsorption behavior of elements 112 and 114 and their homologs Hg and Pb. J. Chem. Phys. 131, 084713 (2009).10.1063/1.3212449Search in Google Scholar PubMed
139. Rykova, E. A., Zaitsevskii, A., Mosyagin, N. S.: Relativistic effective core potential calculations of Hg and eka-Hg (E112) interactions with gold: spin-orbit density functional theory modelling of Hg-Aun and E112-Aun systems. J. Chem. Phys. 125, 241102 (2006).10.1063/1.2403850Search in Google Scholar PubMed
140. Rampino, S., Storchi, L., Belpassi, L.: Gold-superheavy-element interaction in diatomic and cluster adducts: a combined four-component Dirac-Kohn-Sham/charge displacement study. J. Chem. Phys. 143, 024307 (2015).10.1063/1.4926533Search in Google Scholar PubMed
141. Pershina, V.: Reactivity of Superheavy Elements Cn, Nh, and Fl and Their Lighter Homologues Hg, Tl, and Pb, Respectively, with a Gold Surface from Periodic DFT Calculations. Inorg. Chem. 57, 3948 (2018).10.1021/acs.inorgchem.8b00101Search in Google Scholar PubMed
142. Pershina, V.: A relativistic periodic DFT study on interaction of superheavy elements 112 (Cn) and 114 (Fl) and their homologs Hg and Pb, respectively, with a quartz surface. Phys. Chem. Chem. Phys. 18, 17750 (2016).10.1039/C6CP02253GSearch in Google Scholar PubMed
143. Choi, Y., Han, Y. K., Lee, Y. S.: The convergence of spin–orbit configuration interaction calculations for TlH and 113H. J. Chem. Phys. 115, 3448 (2001).10.1063/1.1389289Search in Google Scholar
144. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of gold containing dimers of the 6p and 7p elements and their adsorption on gold. J. Chem. Phys. 133, 104304 (2010).10.1063/1.3476470Search in Google Scholar PubMed
145. Pershina, V., Borschevsky, A., Anton, J., Jacob, T.: Theoretical predictions of trends in spectroscopic properties of homonuclear dimers and volatility of the 7p elements. J. Chem. Phys. 132, 194314 (2010).10.1063/1.3425996Search in Google Scholar PubMed
146. Fox-Beyer, B. S., van Wüllen, C.: Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem. Phys. 395, 95 (2012).10.1016/j.chemphys.2011.04.029Search in Google Scholar
147. Rusakov, A. A., Demidov, Y. A., Zaitsevskii, A.: Estimating the adsorption energy of element 113 on a gold surface. Cent. Eur. J. Phys. 11, 1537 (2013).10.2478/s11534-013-0311-4Search in Google Scholar
148. Pershina, V., Anton, J., Jacob, T.: Electronic structures and properties of MAu and MOH, where M=Tl and element 113. Chem. Phys. Lett. 480, 157 (2009).10.1016/j.cplett.2009.08.069Search in Google Scholar
149. Pershina, V., Iliaš, M.: Electronic structure and properties of MAu and MOH, where M=Tl and Nh: New data. Chem. Phys. Lett. 694, 107 (2018).10.1016/j.cplett.2018.01.045Search in Google Scholar
150. Pershina, V.: A theoretical study on the adsorption behavior of element 113 and its homolog Tl on a quartz surface: relativistic periodic DFT calculations. J. Phys. Chem. C 120, 20232 (2016).10.1021/acs.jpcc.6b07834Search in Google Scholar
151. Dmitriev, S. N., Aksenov, N. V., Albin, Y. V., Bozhikov, G. A., Chelnokov, M. L., Chepygin, V. I., Eichler, R., Isaev, A. V., Katrasev, D. E., Lebedev, V. Ya., Malyshev, O. N., Petrushkin, O. V., Porobanuk, L. S., Ryabinin, M. A., Sabel’nikov, A. V., Sokol, E. A., Svirikhin, A. V., Starodub, G. Ya., Usoltsev, I., Vostokin, G. K., Yeremin, A. V.: Pioneering experiments on the chemical properties of element 113. Mendellev Commun. 24, 253 (2014).10.1016/j.mencom.2014.09.001Search in Google Scholar
152. Serov, A. R., Eichler, R., Dressler, R., Piguet, D., Türler, A., Vögele, A., Wittwer, D., Gäggeler, H. W.: Adsorption interaction of carrier-free thallium species with gold and quartz surfaces. Radiochim. Acta 101, 421 (2013).10.1524/ract.2013.2045Search in Google Scholar
153. Aksenov, N. V., Steinegger, P., Abdullin, F. Sh., Albin, Y. V., Bozhikov, G. A., Chepigin, V. I., Eichler, R., Lebedev, V. Ya., Madumarov, A. Sh., Malyshev, O. N., Petrushkin, O. V., Polyakov, A. N., Popov, Y. A., Sabel’nikov, A. V., Sagaidak, R. N., Shirokovsky, I. V., Shumeiko, M. V., Starodub, G. Ya., Tsyganov, Y. S., Utyonkov, V. K., Voinov, A. A., Vostokin, G. K., Yeremin, A. V., Dmitriev, S. N.: On the volatility of nihonium (Nh, Z=113). Eur. Phys. J. A 53, 158 (5) (2017).10.1140/epja/i2017-12348-8Search in Google Scholar
154. Faegri, K., Saue, T.: Diatomic molecules between very heavy elements of group 13 and group 17: a study of relativistic effects on bonding. J. Chem. Phys. 115, 2456 (2001).10.1063/1.1385366Search in Google Scholar
155. Seth, M., Schwerdtfeger, P., Faegri, K.: The chemistry of superheavy elements. III. Theoretical studies on element 113 compounds. J. Chem. Phys. 111, 6422 (1999).10.1063/1.480168Search in Google Scholar
156. Liu, W., van Wüllen, Ch., Han, Y. K., Choi, Y. J., Lee, Y. S.: Spectroscopic constants of Pb and Eka-lead compounds: comparison of different approaches. Adv. Quant. Chem. 39, 325 (2001).10.1016/S0065-3276(05)39019-8Search in Google Scholar
157. Pershina, V., Anton, J., Fricke, B.: Intermetallic compounds of the heaviest elements and their homologs: The electronic structure and bonding of MM′, where M=Ge, Sn, Pb, and element 114, and M′=Ni, Pd, Pt, Cu, Ag, Au, Sn, Pb, and element 114. J. Chem. Phys. 12, 134310(7) (2007).10.1063/1.2770712Search in Google Scholar PubMed
158. Hermann, A., Furthmüller, J., Gäggeler, H.W., Schwerdtfeger, P.: Spin-orbit effects in structural and electronic properties for the solid state of the group-14 elements from carbon to superheavy element 114. Phys. Rev. B 82, 155116 (2010).10.1103/PhysRevB.82.155116Search in Google Scholar
159. Zaitsevskii, A., van Wüllen, C., Rykova, E. A.: Two-component relativistic density functional modeling of the adsorption of element 114 (eka-led) on gold. Phys. Chem. Chem. Phys. 12, 4152 (2010).10.1039/b923875aSearch in Google Scholar PubMed
160. Eichler, R., Aksenov, N. V., Albin, Yu. V., Belozerov, A. V., Bozhikov, G. A., Chepigin, V. I., Dmitriev, S. N., Dressler, R., Gäggeler, H. W., Gorshkov, V. A., Henderson, R. A., Johnsen, A. M., Kenneally, J. M., Lebedev, V. Ya., Malyshev, O. N., Moody, K. J., Oganessian, Yu. Ts., Petrushkin, O. V., Piguet, D., Popeko, A. G., Rasmussen, P., Serov, A., Shaughnessy, D. A., Shishkin, S. V., Shutov, A. V., Stoyer, M. A., Svirikhin, A. I., Tereshatov, E. E., Vostokin, G. K., Wegrzecki, M., Wittwer P. A., Yeremin, A. V.: Indication for a volatile element 114. Radiochim. Acta 98, 133 (2010).10.1524/ract.2010.1705Search in Google Scholar
161. Yakushev, A., Gates, J. M., Türler, A., Schädel, M., Düllmann, C. E., Ackermann, D., Andersson, L.-L., Block, M., Brüchle, W., Dvorak, J., Eberhardt, K., Essel, H. G., Even, J., Forsberg, U., Gorshkov, A., Graeger, R., Gregorich, K. E., Hartmann, W., Herzberg, R.-D., Heßberger, F. P., Hild, D., Hübner, A., Jäger, E., Khuyagbaatar, J., Kindler, B., Kratz, J. V., Krier, J., Kurz, N., Lommel, B., Niewisch, L. J., Nitsche, H., Omtvedt, J. P., Parr, E., Qin, Z., Rudolph, D., Runke, J., Schausten, B., Schimpf, E., Semchenkov, A., Steiner, J., Thörle-Pospiech, P., Uusitalo, J., Wegrzecki, M., Wiehl. N.: Superheavy element Flerovium (Element 114) is a volatile metal. Inorg. Chem. 53 (3), 1624 (2014).10.1021/ic4026766Search in Google Scholar
162. Yakushev, A.: private communication, GSI, Darmstadt (2018).Search in Google Scholar
163. Seth, M., Faegri, K., Schwerdtfeger, P.: The stability of the oxidation state +4 in Group 14 compounds from carbon to element 114. Angew. Chem. Int. Ed. Engl. 37, 2493 (1998).10.1002/(SICI)1521-3773(19981002)37:18<2493::AID-ANIE2493>3.0.CO;2-FSearch in Google Scholar
164. Schwerdtfeger, P., Seth, M.: Relativistic quantum chemistry of the superheavy elements. Closed-shell element 114 as a case study. J. Nucl. Radiochem. Sci. 3, 133 (2002).10.14494/jnrs2000.3.133Search in Google Scholar
165. Nash, C. S., Bursten, B. E.: Spin-orbit effects on the electronic structure of heavy and superheavy hydrogen halides: prediction of an anomalously strong bond in H[117]. J. Phys. Chem. A 103, 632 (1999).10.1021/jp9843407Search in Google Scholar
166. Schwerdtfeger, P.: Relativistic effects in molecular structure of s- and p-block elements. In: A. Domenicano, I. Hargittai (Eds.), Strength from Weakness: Structural Consequences of Weak Interactions in Molecules, Supermolecules, and Crystals, NATO Science Series, Kluwer, Dordrecht (2002), p. 169.10.1007/978-94-010-0546-3_9Search in Google Scholar
167. Nash, C. S.: Atomic and molecular properties of elements 112, 114 and 118. J. Phys. Chem. A 109, 3493 (2005).10.1021/jp050736oSearch in Google Scholar
168. Pershina, V., to be published.Search in Google Scholar
169. Schwerdtfeger, P.: Toward an accurate description of solid-state properties of superheavy elements. A case study for the element Og (Z=118). EPJ Web of Conferences 131, 07004 (2016).10.1051/epjconf/201613107004Search in Google Scholar
170. Nash, C. S., Bursten, B. E.: Spin-orbit coupling versus the VSEPR method: on the possibility of a nonplanar structure for the super-heavy noble gas tetrafluoride (118)F4. Angew. Chem. Int. Ed. 38, 151 (1999).10.1002/(SICI)1521-3773(19990115)38:1/2<151::AID-ANIE151>3.0.CO;2-1Search in Google Scholar
171. Han, Y.-K., Bae, C., Son, S.-K., Lee, Y. S.: Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118). J. Chem. Phys. 112, 2684 (2000).10.1063/1.480842Search in Google Scholar
172. Pershina, V., Borschevsky, A., Anton, J.: Fully relativistic study of intermetallic dimers of group-1 elements K through element 119 and prediction of their adsorption on noble metal surfaces. Chem. Phys. 395, 87 (2012).10.1016/j.chemphys.2011.04.017Search in Google Scholar
173. Pershina, V., Borschevsky, A., Anton, J.: Theoretical predictions of properties of group-2 elements including element 120 and their adsorption on noble metal surfaces. J. Chem. Phys. 136, 134317 (2012); See also Erratum: ibid 139, 239901 (2013).10.1063/1.3699232Search in Google Scholar PubMed
174. Demidov, Y., Zaitsevskii, A., Eichler, R.: First principles based modelling of the adsorption of atoms of element 120 on a gold surface. Phys. Chem. Chem. Phys. 16, 2268 (2014).10.1039/c3cp54485kSearch in Google Scholar PubMed
175. Pyykkö, P.: Predicting new, simple inorganic species by quantum-chemical calculations: some successes. Phys. Chem. Chem. Phys. 14, 14734 (2012).10.1039/c2cp24003cSearch in Google Scholar PubMed
176. Ionova, G. V., Pershina, V., Johnson, E., Fricke, B., Schädel, M.: Redox reactions for group-5 elements, including element 105, in aqueous solutions. J. Phys. Chem. 96, 11096 (1992).10.1021/j100205a086Search in Google Scholar
177. Pershina, V., Fricke, B.: Electronic structure and properties of the group 4, 5, and 6 highest chlorides including elements 104, 105, and 106. J. Phys. Chem. 98, 6468 (1994).10.1021/j100077a008Search in Google Scholar
178. Pershina, V., Johnson, E., Fricke, B.: Theoretical estimates of redox potentials for group 6 elements, including element 106, seaborgium, in acid solutions. J. Phys. Chem. A 103, 8463 (1999).10.1021/jp990322tSearch in Google Scholar
179. Johnson, E., Fricke, B.: Prediction of some thermodynamic properties of selected compounds of element 104. J. Phys. Chem. 95, 7082 (1991).10.1021/j100171a067Search in Google Scholar
180. Pershina, V., Fricke, B.: Electronic structure and chemistry of the heaviest elements. In: W. Greiner, R. K. Gupta (Eds.), Heavy Elements and Related New Phenomena, World Scientific, Singapore (1999), p. 194.10.1142/9789812816634_0006Search in Google Scholar
181. Pershina, V.: Predictions of redox potentials of Sg in acid solutions as a function of pH. Radiochim. Acta 101, 749 (2013).10.1524/ract.2013.2121Search in Google Scholar
182. Schädel, M., Brüchle, W., Jäger, E., Schausten, B., Wirth, G., Paulus, W., Günther, R., Eberhardt, K., Kratz, J. V., Seibert, A., Strub, E., Thörle, P., Trautmann, N., Waldek, W., Zauner, S., Schumann, D., Kirbach, U., Kubica, B., Misiak, R., Nagame, Y., Gregorich, K. E.: Aqueous chemistry of seaborgium (Z=106). Radiochim. Acta 83, 163 (1998).10.1524/ract.1998.83.3.163Search in Google Scholar
183. Pershina, V., Trubert, D., Le Naour, C., Kratz, J. V.: Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions. Radiochim. Acta 90, 869 (2002).10.1524/ract.2002.90.12_2002.869Search in Google Scholar
184. Pershina, V., Polakova, D., Omtvedt, J. P.: Theoretical predictions of complex formation of group-4 elements Zr, Hf, and Rf in H2SO4 solutions. Radiochim. Acta 94, 407 (2006).10.1524/ract.2006.94.8.407Search in Google Scholar
185. Pershina, V.: Solution Chemistry of Element 105. Part I: Hydrolysis of Group 5 Cations: Nb, Ta, Ha and Pa. Radiochim. Acta 80, 65 (1998).10.1524/ract.1998.80.2.65Search in Google Scholar
186. Pershina, V.: Solution chemistry of element 105. Part II: hydrolysis and complex formation of Nb, Ta, Ha and Pa in HCl solutions. Radiochim. Acta 80, 75 (1998).10.1524/ract.1998.80.2.75Search in Google Scholar
187. Pershina, V., Kratz, J. V.: Solution chemistry of element 106: theoretical predictions of hydrolysis of group 6 cations Mo, W, and Sg. Inorg. Chem. 40, 776 (2001).10.1021/ic0003731Search in Google Scholar PubMed
188. Pershina, V.: Theoretical treatment of the complexation of element 106, Sg, in HF solutions. Radiochim. Acta 92, 455 (2004).10.1524/ract.92.8.455.39279Search in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications
Articles in the same Issue
- Frontmatter
- Editorial: 150 years of the Periodic Table of Chemical Elements
- Part A: Actinides and Transactinides
- Evolution of the periodic table through the synthesis of new elements
- Nuclear and chemical characterization of heavy actinides
- Direct mass measurements and ionization potential measurements of the actinides
- Relativity in the electronic structure of the heaviest elements and its influence on periodicities in properties
- The periodic table – an experimenter’s guide to transactinide chemistry
- Synthesis and properties of isotopes of the transactinides
- Part B: Nuclear Energy
- Homogenous recycling of transuranium elements from irradiated fast reactor fuel by the EURO-GANEX solvent extraction process
- Separation of trivalent actinides and lanthanides using various ‘N’, ‘S’ and mixed ‘N,O’ donor ligands: a review
- Separation of actinides from lanthanides associated with spent nuclear fuel reprocessing in China: current status and future perspectives
- Contamination of Fukushima Daiichi Nuclear Power Station with actinide elements
- Protactinium(V) in aqueous solution: a light actinide without actinyl moiety
- What do we know about actinides-proteins interactions?
- Part C: Medical Radionuclides
- Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use
- Radiochlorine: an underutilized halogen tool
- Radiobromine and radioiodine for medical applications
- Radiochemical aspects of alpha emitting radionuclides for medical application
- Chelators and metal complex stability for radiopharmaceutical applications