Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
Abstract
In this study, UCl4 was prepared by the reaction of HCl gas with UO2 in the LiCl-KCl eutectic. Then, the electrochemical behavior of U4+ and U3+ on a Mo cathode was investigated by various electrochemical techniques. The reduction process of U4+ was regarded as two steps: U4++e=U3+; U3++3e=U. Diffusion coefficients of U4+ and U3+, the apparent standard potential of U4+/U3+, U3+/U as well as U4+/U in the LiCl-KCl molten salt on the Mo electrode was determined by numerous electrochemical methods. The thermodynamic functions of formation of Gibbs free energy of UCl4 and UCl3 are calculated as well.
References
1. Reddy, B. P., Vandarkuzhali, S., Subramanian, T., Venkatesh, P.: Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl–KCl eutectic. Electrochim. Acta 49, 2471 (2004).10.1016/j.electacta.2004.02.002Suche in Google Scholar
2. Perumal, S. V., Reddy, B. P., Ravisankar, G., Nagarajan, K.: Actinides draw down process for pyrochemical reprocessing of spent metal fuel. Radiochim Acta. 103, 287 (2015).10.1515/ract-2014-2288Suche in Google Scholar
3. Kim, G. Y., Yoon, D., Paek, S., Kim, S. H., Kim, T. J., Ahn, D. H.: A study on the electrochemical deposition behavior of uranium ion in a LiCl–KCl molten salt on solid and liquid electrode. J. Electroanal. Chem. 682, 128 (2012).10.1016/j.jelechem.2012.07.025Suche in Google Scholar
4. Zhang, J.: Electrochemistry of actinides and fission products in molten salts – data review. J. Nucl. Mater. 447, 271 (2014).10.1016/j.jnucmat.2013.12.017Suche in Google Scholar
5. Kuznetsov, S. A., Hayashi, H., Minato, K., Gaune-Escard, M.: Electrochemical behavior and some thermodynamic properties of ucl4 and ucl3 dissolved in a licl-kcl eutectic melt. J. Electrochem. Soc. 152, C203 (2005).10.1149/1.1864532Suche in Google Scholar
6. Paek, S., Kim, S. H., Yoon, D. S., Lee, H., Ahn, D. H.: Performance of the mesh-type liquid cadmium cathode structure for the electrodeposition of uranium from the molten salt. Radiochim. Acta 98, 779 (2010).10.1524/ract.2010.1778Suche in Google Scholar
7. Flengas, S. N.: Electrode potentials of the uranium chlorides in fused alkali chloride solutions. Can. J. Chem. 39, 773 (1961).10.1139/v61-094Suche in Google Scholar
8. Nagai, T., Uehara, A., Fujii, T., Shirai, O., Sato, N., Yamana, H.: Redox equilibrium of U4+/U3+ in molten NaCl-2CsCl by UV-Vis spectrophotometry and cyclic voltammetry. Nucl. Sci. Technol. 42, 1025 (2005).10.1080/18811248.2005.9711055Suche in Google Scholar
9. Souček, P., Cassayre, L., Malmbeck, R., Mendes, E., Jardin, R., Glatz, J. P.: Electrorefining of U-Pu-Zr-alloy fuel onto solid aluminium cathodes in molten LiCl-KCl. Radiochim. Acta 96, 315 (2008).10.1524/ract.2008.1493Suche in Google Scholar
10. Cassayre, L., Caravaca, C., Jardin, R., Malmbeck, R., Masset, P., Mendes, E., Serp, J., Soucek, P., Glatz, J.-P.: On the formation of U–Al alloys in the molten LiCl–KCl eutectic. J. Nucl. Mater. 378, 79 (2008).10.1016/j.jnucmat.2008.05.004Suche in Google Scholar
11. Caravaca, C., Laplace, A., Vermeulen, J., Lacquement, J.: Determination of the E-pO2− stability diagram of plutonium in the molten LiCl–KCl eutectic at 450 °C. J. Nucl. Mater. 377, 340 (2008).10.1016/j.jnucmat.2008.01.031Suche in Google Scholar
12. Sancier, K. M., Freed, S.: Comparison of absorption spectrum of uranium tetrachloride with that of praseodymium trichloride and of uranium trichloride with that of neodymium trichloride. J. Chem. Phys. 20, 349 (1952).10.1063/1.1700421Suche in Google Scholar
13. Castrillejo, Y., Fuente, C. D. L., Vega, M., Rosa, F. D. L., Pardo, R., Barrado, E.: Cathodic behaviour and oxoacidity reactions of samarium (III) in two molten chlorides with different acidity properties: the eutectic LiCl–KCl and the equimolar CaCl2–NaCl melt. Electrochim. Acta 97, 120 (2013).10.1016/j.electacta.2013.02.115Suche in Google Scholar
14. Xue, Y., Wang, Q., Yan, Y. D., Chen, L., Zhang, M. L., Zhang, Z. J.: Cathodic behaviour of samarium (III) in LiCl-KCl melts on molybdenum and aluminium electrodes. Energy Procedia. 39, 474 (2013).10.1016/j.egypro.2013.07.239Suche in Google Scholar
15. Caravaca, C., Córdoba, G. D., Tomás, M. J., Rosado, M.: Electrochemical behaviour of gadolinium ion in molten LiCl–KCl eutectic. J. Nucl. Mater. 360, 25 (2007).10.1016/j.jnucmat.2006.08.009Suche in Google Scholar
16. Cho, Y. H., Bae, S. E., Park, Y. J., Oh, S. Y., Kim, J. Y., Song, K.: Electronic structure of U (III) and U (IV) ions in a LiCl–KCl eutectic melt at 450 °C. Microchem. J. 102, 18 (2012).10.1016/j.microc.2011.05.006Suche in Google Scholar
17. Cassir, M., Ringuedé, A., Lair, V.: 17 – Molten Carbonates from Fuel Cells to New Energy Devices, in Molten Salts Chemistry, Elsevier, Oxford (2013).10.1016/B978-0-12-398538-5.00017-2Suche in Google Scholar
18. Caligara, F., Martinot, L., Duyckaerts, G.: Chronopotentiometric determination of U (III), U (IV), UO2 (VI) and Np (IV) in molten LiCl-KCl eutectic. J. Electroanal. Chem. Interfac. 16, 335 (1968).10.1016/S0022-0728(68)80081-6Suche in Google Scholar
19. Masset, P., Bottomley, D., Konings, R., Malmbeck, R., Rodrigues, A., Glatz, J. P.: Electrochemistry of uranium in molten LiCl-KCl eutectic. J. Electrochem. Soc. 152, A1109 (2005).10.1149/1.1901083Suche in Google Scholar
20. Tang, H., Pesic, B.: Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim. Acta 119, 120 (2014).10.1016/j.electacta.2013.11.148Suche in Google Scholar
21. Iizuka, M.: Diffusion coefficients of cerium and gadolinium in molten LiCl-KCl. J. Electrochem. Soc. 145, 84 (1998).10.1149/1.1838216Suche in Google Scholar
22. Martinot, L.: Gmelin Handbuch der Anorganischen Chemie, Springer-Verlag, (1984).Suche in Google Scholar
23. Shirai, O., Iwai, T., Suzuki, Y., Sakamura, Y., Tanaka, H.: Electrochemical behavior of actinide ions in LiCl–KCl eutectic melts. J. Alloys Compd. 271, 685 (1998).10.1016/S0925-8388(98)00187-XSuche in Google Scholar
24. Roy, J. J., Grantham, L. F., Grimmett, D. L., Fusselman, S. P., Kruegera, C. L., Storvickb, T. S., Inoue, T., Sakamura, Y., Takahashi, N.: Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCl eutectic and liquid cadmium. J. Electrochem. Soc. 143, 2487 (1996).10.1149/1.1837035Suche in Google Scholar
25. Shirai, O., Iizuka, M., Iwai, T., Arai, Y.: Electrode reaction of the Np3+/Np couple in LiCl–KCl eutectic melts. J. Appl. Electrochem. 31, 1055 (2001).10.1023/A:1017987110008Suche in Google Scholar
26. Kuznetsov, S. A., Hayashi, H., Minato, K., Gaune-Escard, M.: Determination of uranium and rare-earth metals separation coefficients in LiCl–KCl melt by electrochemical transient techniques. J. Nucl. Mater. 344, 169 (2005).10.1016/j.jnucmat.2005.04.037Suche in Google Scholar
27. Osipenko, A. G., Mayorshin, A. A., Kormilitsyn, M. V., Bychkov, A. V.: Electrochemical Behaviour of Curium in Chloride Melts. 217th ECS Meeting. (2010).10.1149/MA2010-01/37/1690Suche in Google Scholar
28. Osipenko, A. G., Maershin, A. A., Volkovich, V. A., Kormilitsyn, M. V., Bychkov, A. V.: Reaction of curium (III) ions with oxo-species in alkali chloride melts. ECS Trans. 33, 401 (2010).10.1149/1.3484798Suche in Google Scholar
29. Osipenko, A., Maershin, A., Smolenski, V., Novoselova, A., Kormilitsyn, M., Bychkov, A.: Electrochemical behaviour of curium(III) ions in fused 3LiCl–2KCl eutectic. J. Electroanal. Chem. 651, 67 (2011).10.1016/j.jelechem.2010.10.027Suche in Google Scholar
30. Nagai, T., Uehara, A., Fujii, T., Shirai, O., Sato, N., Yamana, H.: Redox equilibria of the U4+/U3+ and U3+/U couples in molten LiCl-RbCl eutectic. Electrochemistry 77, 614 (2009).10.5796/electrochemistry.77.614Suche in Google Scholar
31. Masset, P., Konings, R. J. M., Malmbeck, R., Serp, J., Glatz, J.-P.: Thermochemical properties of lanthanides (Ln=La; Nd) and actinides (An=U; Np; Pu; Am) in the molten LiCl–KCl eutectic. J. Nucl. Mater. 344, 173 (2005).10.1016/j.jnucmat.2005.04.038Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics
Artikel in diesem Heft
- Frontmatter
- Electrochemical and thermodynamic properties of U4+ and U3+ on Mo electrode in LiCl-KCl eutectic
- Speciation of technetium in carbonate media under helium ions and γ radiation
- Effect of sulfate on sorption of Eu(III) by Na-montmorillonite
- Effect of grain size on radon emanation coefficient, surface and mass exhalation rates and the correlation coefficient between them in different masses of soil and phosphate fertilizer
- Ratio primary reference measurement procedure (RPRMP) for the certification of chromium content in biological reference materials
- Photon activation analysis of sand samples from Antalya in Turkey with a clinical electron linear accelerator
- 68Ga@pyridine-functionalized MCM-41 mesoporous silica: a novel radio labeled composite for diagnostic applications
- Kinetics of nonisothermal dehydration of unirradiated and γ-ray irradiated neodymium (III) acetate hydrate
- Investigation of radiation shielding properties for some ceramics