Startseite Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synergistic effect of oxidized low-dimensional carbon nanomaterials on the properties of polysulfone composite membrane

  • Jin Xu ORCID logo EMAIL logo , Fei Wang , Chunting Wang , Qi Zhang und Yan He
Veröffentlicht/Copyright: 11. Juni 2021
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using the immersion phase inversion process, polysulfone (PSF), grapheme oxide (GO) and modified carbon nanotubes (MCNTs) were dissolved in 1-methyl-2-pyrrolidone (NMP) to prepare nanocomposite membranes. The GO-MCNTs blended PSF membranes were characterized by several analytical methods, such as morphology analysis, group characteristic peak test, hydrophilic measurement and permeation tests, and the synergistic effect of GO and MCNTs on the membrane performance was investigated. Microscope images depict two-layer structure of the composite membrane, in which, the lower layer is finger like porous layer, and the upper layer is a thinner separation layer. M-CNTs have great influence on formation of the upper separation layer, while the hydrophilic nature of GO results in the formation of the lower supporting layer, which changes from finger shaped hole to honeycomb pore. The change of membrane structure not only improves the surface hydrophilicity, but also promotes the membrane performance. In particular, the composite membrane (mGO:MCNTs = 2:1) exhibits a much smaller contact angle (48.01°), a high permeation flux (33.25 L/m2·h) and superior rejection rate (95.2%). Furthermore, the fine compaction performance of composite membrane also provides great potential application prospects in water treatment.


Corresponding author: Jin Xu,College of Electromechanical Engineering, Shandong Engineering Laboratory for Preparation and Application of High-performance Carbon Materials, Qingdao University of Science and Technology, Qingdao, 266061, China, E-mail:

Funding source: Taishan Scholar Foudation of Shandong Province (China)

Award Identifier / Grant number: ts20190937

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Taishan Scholar Foudation of Shandong Province, China (no. ts20190937).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Howe, K. J., Clark, M. M. J. Environ. Sci. Technol. 2002, 36, 3571–3576; https://doi.org/10.1021/es025587r.Suche in Google Scholar

2. Xiao, C. F., Liu, Z. Chemical Industry Press: Beijing, 2014; pp. 19–25.Suche in Google Scholar

3. Chen, C. X., Guo, H. X., Qin, P. Y. Chemical Industry Press: Beijing, 2017; pp. 13–17.Suche in Google Scholar

4. Liu, F., Zhu, B. K., Xu, Y. Y. J. Appl. Polym. Sci. 2007, 105, 291–296; https://doi.org/10.1002/app.25641.Suche in Google Scholar

5. Liu, F., Zhu, B. K., Xu, Y. Y. Appl. Surf. Sci. 2006, 253, 2096–2101; https://doi.org/10.1016/j.apsusc.2006.04.007.Suche in Google Scholar

6. Zhao, Y. H., Zhu, B. K., Kong, L., Xu, Y. Y. Langmuir 2007, 23, 5779–5786; https://doi.org/10.1021/la070139o.Suche in Google Scholar

7. Chiang, Y. C., Chang, Y., Higuchi, A., Chen, W. Y., Ruaan, R. C. J. Membr. Sci. 2008, 309, 165–174.10.1016/j.memsci.2007.10.024Suche in Google Scholar

8. Yan, L., Li, Y. S., Xiang, C. B. J. Membr. Sci. 2006, 276, 162–167; https://doi.org/10.1016/j.memsci.2005.09.044.Suche in Google Scholar

9. Yu, L. Y., Xu, Z. L., Shen, H. M., Yang, H. Membr. Sci. 2009, 337, 257–265; https://doi.org/10.1016/j.memsci.2009.03.054.Suche in Google Scholar

10. Han, L. F., Xu, Z. L., Cao, Y., Wei, Y. M., Xu, H. T. J. Membr. Sci. 2011, 372, 154–164; https://doi.org/10.1016/j.memsci.2011.01.065.Suche in Google Scholar

11. Nakagawa, T., Fujisaki, S., Nakano, H., Higuchi, A. J. Membr. Sci. 1994, 94, 183–193; https://doi.org/10.1016/0376-7388(93)e0169-k.Suche in Google Scholar

12. Wang, Z. Y., Chen, X., Li, K., Bi, S. Y., Wu, C. L., Chen, L. J. Membr. Sci. 2015, 496, 95–107; https://doi.org/10.1016/j.memsci.2015.08.041.Suche in Google Scholar

13. Hu, H. Z., Han, R. F., Liu, Y., Mao, Z. Y., Tan, Z. Y. China Plast. Ind. 2020, 4, 58–60. +97.Suche in Google Scholar

14. Li, X., Li, J. S., Fang, X. F., Bakzhan, K., Wang, L. J., Van der Bruggen, B. J. Colloid Interface Sci. 2016, 469, 164–176; https://doi.org/10.1016/j.jcis.2016.02.002.Suche in Google Scholar

15. Yan, L., Li, Y. S., Xiang, C. B. Polymer 2005, 46, 7701–7706; https://doi.org/10.1016/j.polymer.2005.05.155.Suche in Google Scholar

16. Ganesh, B. M., Isloor, A. M., Ismail, A. F. Desalination 2013, 313, 199–207; https://doi.org/10.1016/j.desal.2012.11.037.Suche in Google Scholar

17. Crock, C. A., Rogensues, A. R., Shan, W., Tarabara, V. V. Water Res. 2013, 47, 3984–3996; https://doi.org/10.1016/j.watres.2012.10.057.Suche in Google Scholar

18. Wang, Z. H., Yu, H. R., Xia, J. F., Zhang, F. F., Li, F., Xia, Y. Z., Li, Y. H. Desalination 2012, 299, 50–54; https://doi.org/10.1016/j.desal.2012.05.015.Suche in Google Scholar

19. Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., Zangeneh, H. J. Membr. Sci. 2014, 453, 292–301; https://doi.org/10.1016/j.memsci.2013.10.070.Suche in Google Scholar

20. Chae, H. R., Lee, J., Lee, C. H., Kim, I. C., Park, P. K. J. Membr. Sci. 2015, 483, 128–135; https://doi.org/10.1016/j.memsci.2015.02.045.Suche in Google Scholar

21. Zhao, H. Y., Qiu, S., Wu, L. G. J. Membr. Sci. 2014, 450, 249–256; https://doi.org/10.1016/j.memsci.2013.09.014.Suche in Google Scholar

22. Manorma, Ferreira, I., Alves, P., Gil, M. H., Gando-Ferreira, L. M. Separ. Purif. Technol. 2021, 260, 118231; https://doi.org/10.1016/j.seppur.2020.118231.Suche in Google Scholar

23. Zhang, J. G., Xu, Z. W., Mai, W., Min, C. Y. J. Mater. Chem. 2013, 1, 3101–3111; https://doi.org/10.1039/c2ta01415g.Suche in Google Scholar

24. Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., Tour, J. M. ACS Nano 2010, 4, 4806–4814; https://doi.org/10.1021/nn1006368.Suche in Google Scholar

25. Sudesh, Kumar, N., Das, S., Bernhard, C., Varma, G. D. Supercond. Sci. Technol. 2013, 26, 95008; https://doi.org/10.1088/0953-2048/26/9/095008.Suche in Google Scholar

26. Bissessur, R., Scully, S. F. Solid State Ionics 2007, 178, 877–882; https://doi.org/10.1016/j.ssi.2007.02.030.Suche in Google Scholar

27. Yang, T., Liu, L. H., Liu, J. W., Chen, M. L. J. Mater. Chem. 2012, 22, 21909–21916; https://doi.org/10.1039/c2jm34712a.Suche in Google Scholar

28. Liu, H. X., Zhang, H. Q., Liu, J. D., Luo, Q. T. Hennan Chemical Industry, 5, 2004; pp. 36–37.Suche in Google Scholar

Received: 2021-01-27
Accepted: 2021-05-04
Published Online: 2021-06-11
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/polyeng-2021-0014/pdf
Button zum nach oben scrollen