Startseite Mathematik On the topology of partial metric spaces
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the topology of partial metric spaces

  • Dariusz Bugajewski und Ruidong Wang EMAIL logo
Veröffentlicht/Copyright: 13. Januar 2020
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we give some necessary and sufficient conditions under which the topology generated by a partial metric is equivalent to the topology generated by a suitably defined metric. Next, we study some new extensions of the Generalized Banach Contraction Principle to partial metric spaces. Moreover, we draw a particular attention to the space of all sequences showing, in particular, that some well-known fixed point theorems for ultrametric spaces, can be used for operators acting in that space. We illustrate our considerations by suitable examples and counterexamples.


This work was supported by the Natural Science Foundation of China Grant No. 11301384.


  1. Communicated by L’ubica Holá

Acknowledgement

This research was partly supported by the Natural Science Foundation of China (Grant Nos. 11201337, 11201338, 11371201, 11301384). The authors thank the anonymous referee for multiple stylistical improvements. The second author is grateful to the Faculty of Mathematics and Computer Science, Adam Mickiewicz University in Poznań, for the excellent working conditions during the visit from February 2018 to August 2018.

References

[1] Aydi, H.—Karapinar, E.—Kumam, P.: A note on ’Modified proof of Caristi’s fixed point theorem on partial metric spaces, J. Inequal. Appl. 2013:355 (2013).10.1186/1029-242X-2013-210Suche in Google Scholar

[2] Aydi, H.—Hadj-Amor, S.—Karapinar, E.: Berinde-type generalized contractions on partial metric spaces, Abstr. Appl. Anal. 2013 (2013), Art. ID 312479.10.1155/2013/312479Suche in Google Scholar

[3] Aydi, H.—Karapinar, E.: New Meir-Keeler type tripled fixed point theorems on ordered partial metric spaces, Math. Probl. Eng. (2012), Art. ID 409872.10.1155/2012/409872Suche in Google Scholar

[4] Aydi, H.—Karapinar, E.—Rezapour, Sh.: A generalized Meir-Keeler-type contraction on partial metric spaces, Abstr. Appl. Anal. 2012 (2012), Art. ID 287127.10.1155/2012/287127Suche in Google Scholar

[5] Aydi, H.—Karapinar, E.: A Meir-Keeler common type fixed point theorem on partial metric spaces, Fixed Point Theory Appl. (2012), 2012:26.10.1186/1687-1812-2012-26Suche in Google Scholar

[6] Altun, I.—Sola, F.—Simsek, H.: Generalized contractions on partial metric spaces, Topology Appl. 157 (2010), 2778–2785.10.1016/j.topol.2010.08.017Suche in Google Scholar

[7] Arvanitakis, A. D.: A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc. 131(12) (2013), 3647–3656.10.1090/S0002-9939-03-06937-5Suche in Google Scholar

[8] Bugajewski, D.: Fixed point theorems in locally convex spaces, Acta Math. Hungar. 98(4) (2003), 345–355.10.1023/A:1022842429470Suche in Google Scholar

[9] Bugajewski, D.—Gan, X.-X.: Some remarks onformal power series and formal Laurent series, Math. Slovaca 67(3)(2017), 631–644.10.1515/ms-2016-0297Suche in Google Scholar

[10] Bukatin, M.—Kopperman, R.—Matthews, S.—Pajoohesh, H.: Partial metric spaces, Amer. Math. Monthly 8(116) (2009), 708–718.10.4169/193009709X460831Suche in Google Scholar

[11] Chi, K. P.—Karapinar, E.—Thanh, T. D.: A generalized contraction principle in partial metric spaces, Math. Comput. Modelling 55 (2012), 1673–1681.10.1016/j.mcm.2011.11.005Suche in Google Scholar

[12] Gan, X.-X.: Selected Topics of Formal Analysis. Lect. Notes Nonlinear Anal. 15, Juliusz Schauder Center for Nonlinear Studies, Nicolaus Copernicus University, Toruń, 2017.Suche in Google Scholar

[13] Haghi, R. H.—Rezapour, Sh.—Shahead, N.: Be careful on partial metric fixed point results, Topology Appl. 160 (2013), 450–454.10.1016/j.topol.2012.11.004Suche in Google Scholar

[14] Hitzler, P.—Seda, A.: Mathematical Aspects of Logic Programming Semantics, Chapman & Hall/CRC Studies in Informatic Series, CRC Press, 2011.Suche in Google Scholar

[15] D. Ilić, D.—Pavlović, V.—Rakočević, V.: Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett. 24 (2011), 1326–1330.10.1016/j.aml.2011.02.025Suche in Google Scholar

[16] Matthews, S. G.: Partial metric topology. In: Papers on General Topology and Applications, Flushing, NY, 1992; In: Ann. New York Acad. Sci. 728, New York Acad. Sci., New York, 1994, pp. 183–197.Suche in Google Scholar

[17] Merryfield, J.—Stein Jr., J. D.: A generalization of the Banach contraction principle, J. Math. Anal. Appl. 273 (2002), 112-120.10.1016/S0022-247X(02)00215-9Suche in Google Scholar

[18] Petelas, C.—Vidalis, T.: A fixed point theorem in non-Archimedean vector spaces, Proc. Amer. Math. Soc. 118(3) (1993), 819–821.10.1090/S0002-9939-1993-1132421-2Suche in Google Scholar

[19] Schikhof, W. H.: Ultrametric Calculus. An Introduction to p-adic Analysis, Cambridge University Press, 2007.Suche in Google Scholar

[20] Smyth, M. B.—Tsaur, R.: Hyperconvex semi-metric spaces, Topology Proc. 2006 (2001/2002), 791–810.Suche in Google Scholar

Received: 2019-04-05
Accepted: 2019-07-11
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Heruntergeladen am 16.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0338/html
Button zum nach oben scrollen