Home Maximum term of transcendental entire function and spider’s web
Article
Licensed
Unlicensed Requires Authentication

Maximum term of transcendental entire function and spider’s web

  • Garima Tomar and Vishnu Narayan Mishra EMAIL logo
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

Levels of fast escaping sets were discussed by Rippon and Stallard. Here we have defined a set BR(f) analogous to 0th level of fast escaping set by using maximum term and formation of spider’s web structure has been discussed for this set.

MSC 2010: Primary 30D05; 37F10


  1. Communicated by Stanisława Kanas

References

[1] Beardon, A. F.: Iteration of Rational Functions. Grad. Texts in Math. 132, Springer-Verlag, 1991.10.1007/978-1-4612-4422-6Search in Google Scholar

[2] Bergweiler, W.: Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), 151–188.10.1090/S0273-0979-1993-00432-4Search in Google Scholar

[3] Bergweiler, W.—Hinkkanen, A.: On semiconjugation of entire functions, Math. Proc. Camb. Phil. Soc. 126 (1999), 565–574.10.1017/S0305004198003387Search in Google Scholar

[4] Eremenko, A. E.: On the iteration of entire functions. In: Dynamical systems and ergodic theory, Banach Center Publ. 23, 1989, pp. 339–345.Search in Google Scholar

[5] Fatou, P.: Sur l'itération des fonctions transcendantes Entières, Acta Math. 47 (1926), 337–360.10.1007/BF02559517Search in Google Scholar

[6] Julia, G.: Mémoire sur l'itération des fonctions rationelles, J. Math. Pure Appl. 4(7) (1918), 47–245.Search in Google Scholar

[7] Morosawa, S.—Nishimura, Y.—Taniguchi, M.—Ueda, T.: Holomorphic Dynamics. Cambridge Stud. Adv. Math. 66, Cambridge, 2000.Search in Google Scholar

[8] Mihaljević-Brandt, H.—Peter, J.: Poincaré functions with spiders' webs, Proc. Amer. Math. Soc. 140 (2012), 3193–3205.10.1090/S0002-9939-2012-11164-5Search in Google Scholar

[9] Osborne, J. W.: The structure of spider’s web fast escaping sets, Bull. London Math. Soc. 3(44) (2012), 503–519.10.1112/blms/bdr112Search in Google Scholar

[10] Osborne, J. W.: Spider’s web and locally connected Julia set of transcendental entire function, Ergodic Theory Dynam. Systems 33(4) (2013), 1146–1161.10.1017/S0143385712000259Search in Google Scholar

[11] Rippon P. J.—Stallard, G. M.: Fast escaping points of entire functions, Proc. London Math. Soc. 105 (2012), 787–820.10.1112/plms/pds001Search in Google Scholar

[12] Rippon P. J.—Stallard, G. M.: A sharp growth condition for a fast escaping spider’s web, Adv. Math. 244 (2013), 337–353.10.1016/j.aim.2013.04.021Search in Google Scholar

[13] Singh, A. P.: Maximum modulus and maximum term of composition of entire functions, Indian J. Pure and Appl. Math. 22(12) (1991), 1019–1026.Search in Google Scholar

[14] Sixsmith, D. J.: Entire functions for which the escaping set is a spider’s web, Math. Proc. Camb. Phil. Soc. 151 (2011), 551–571.10.1017/S0305004111000582Search in Google Scholar

Received: 2018-12-07
Accepted: 2019-06-26
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0333/html
Scroll to top button