Home Mathematics The amalgam space L(p,q)π(G) on IN-groups
Article
Licensed
Unlicensed Requires Authentication

The amalgam space L(p,q)π(G) on IN-groups

  • Fatemeh Abtahi , Ali Rejali and Navid Sabzali
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

Let G be an IN-group and 0 < p, q < ∞. In this paper, we determine necessary and sufficient conditions for the existence of the convolution of functions, in the amalgam space L(p,q)π(G).

  1. Communicated by Gregor Dolinar

References

[1] Abtahi, F.—Nasr Isfahani, R.—Rejali, A.: On the Lp-conjecture for locally compact groups, Arch. Math. (Basel) 89, (2007), 237–242.10.1007/s00013-007-1993-xSearch in Google Scholar

[2] Abtahi, F.—Nasr Isfahani, R.—Rejali, A.: On the weighted Lp-space on a discrete group, Publ. Math. Debrecen 75(3–4) (2009), 365–374.10.5486/PMD.2009.4372Search in Google Scholar

[3] Abtahi, F.: Weighted Lp-spaces on locally compact groups Bull. Belg. Math. Soc. Simon Stevin 19(2) (2012), 339–343.10.36045/bbms/1337864277Search in Google Scholar

[4] Abtahi, F.—Nasr Isfahani, R.—Rejali, A.: Convolution on Lp-space of a locally compact group, Math. Slovaca 63(2) (2013), 291–298.10.2478/s12175-012-0098-6Search in Google Scholar

[5] Bertrandias, J. P.—Darty, C.—Dupuis, C.: Unions et intersections ’ espace LP invariantes partransation ou convolution, Ann. Ins. Fourier (Grenoble). 28 (1978), 58–84.Search in Google Scholar

[6] Busby, R. C.—Smith, H. A.: Product-convolution operators and mixed-norm spaces, Trans. Amer. Math. Soc. 263 (1981), 309–341.10.1090/S0002-9947-1981-0594411-4Search in Google Scholar

[7] Feichtinger, H. G.: On a new Segal algebra, Monatsh. Math. 92 (1981), 269–289.10.1007/BF01320058Search in Google Scholar

[8] Feichtinger, H. G.: Banach convolution algebras of Wiener type, Proc. Conf. on Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. Janos Bolyai. 35 (1983), 509–524.Search in Google Scholar

[9] Guo, W.—Fan, D.—Wu, H.—Zhao, G.: Sharp weighted convolution inequalities and some applications, Studia Math. 241(3) (2018), 201–239.10.4064/sm8583-5-2017Search in Google Scholar

[10] Hewitt, E.—Ross, K.: Abstract Harmonic Analysis I, Springer-Verlag, New York, 1970.10.1007/978-3-662-26755-4Search in Google Scholar

[11] Holland, F.: Harmonic analysis on amalgams of Lp and lq, J. London Math. Soc. 10 (1975), 295–305.10.1112/jlms/s2-10.3.295Search in Google Scholar

[12] Saeki, S.: The Lp-conjecture and Young’s inequality, Illinois J. Math. 34 (1990), 615–627.10.1215/ijm/1255988174Search in Google Scholar

[13] Stewart, J.: Fourier transform of unbounded measure, Canad. J. Math. 31 (1979), 1281–1292.10.4153/CJM-1979-106-4Search in Google Scholar

[14] Stewart, J.—Watson, S.: Which amalgams are convolution algebras?, Proc. Amer. Math. Soc. 93 (1985), 621–627.10.1090/S0002-9939-1985-0776191-1Search in Google Scholar

[15] Torres, M.: Amalgams of Lp and ℓq, PHD Thesis, Mc Master University, USA, 1984.Search in Google Scholar

[16] Wiener, N.: On the representation of functions by trigonometric integrals, Math. Z. 24 (1926), 575–616.10.1007/BF01216799Search in Google Scholar

[17] Zelazko, W.: A theorem on the discrete groups and algebras Lp, Colloq. Math. 8 (1961), 205–207.10.4064/cm-8-2-205-207Search in Google Scholar

[18] Zelazko, W.: On the algebras Lp of a locally compact group, Colloq. Math. 8 (1961), 112–120.Search in Google Scholar

Received: 2018-09-27
Accepted: 2019-06-25
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0337/html
Scroll to top button