Home On 4-th root metrics of isotropic scalar curvature
Article
Licensed
Unlicensed Requires Authentication

On 4-th root metrics of isotropic scalar curvature

  • Akbar Tayebi
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

In this paper, we prove that every non-Riemannian 4-th root metric of isotropic scalar curvature has vanishing scalar curvature. Then, we show that every 4-th root metric of weakly isotropic flag curvature has vanishing scalar curvature. Finally, we find the necessary and sufficient condition under which the conformal change of a 4-th root metric is of isotropic scalar curvature.

  1. Communicated by Július Korbaš

Acknowledgement

The author would like to thank Professors Behzad Najafi and Hideo Shimada for their valuable comments and their encouragements during preparation of this manuscript. Also, the author would like to thank the referee for his/her careful reading of the manuscript and exact suggestions.

References

[1] Akbar-Zadeh, H.: Initiation to Global Finslerian Geometry, Elsevier, 2006.Search in Google Scholar

[2] Akbar-Zadeh, H.: Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. 74(5) (1988), 271–322.10.3406/barb.1988.57782Search in Google Scholar

[3] Akbar-Zadeh, H.: Generalized Einstein manifolds, J. Geom. Phys. 17 (1995), 342–380.10.1016/0393-0440(94)00052-2Search in Google Scholar

[4] Antonelli, P. L.—Ingarden, R.—Matsumoto, M.: The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ., Netherlands, 199).Search in Google Scholar

[5] Bao, D.—Chern, S. S.—Shen, Z.: An Introduction to Riemann-Finsler Geometry, Springer-Verlag, 2000.10.1007/978-1-4612-1268-3Search in Google Scholar

[6] Bácsó, S.—Cheng, X.: Finsler conformal transformations and the curvature invariance, Publ. Math. Debrecen 70(1-2) (2007), 221–231.10.5486/PMD.2007.3606Search in Google Scholar

[7] Bao, D.—Robles, C.: Ricci and flag curvatures in Finsler geometry, A Sampler of Riemann-Finsler Geometry, MSRI Publications 50 (2004), 198–256.Search in Google Scholar

[8] Cheng, X.—Yuan, M.: On Randers metrics of isotropic scalar curvature, Publ. Math. Debrecen 84 (2014), 63–74.10.5486/PMD.2014.5833Search in Google Scholar

[9] Li, B.—Shen, Z.: Ricci curvature tensor and non-Riemannian quantities, Canad. Math. Bull. 58 (2015), 530–537.10.4153/CMB-2014-063-4Search in Google Scholar

[10] Li, B.—Shen, Z.: On projectively flat fourth root metrics, Canad. Math. Bull. 55 (2012), 138–145.10.4153/CMB-2011-056-5Search in Google Scholar

[11] Najafi, B.—Shen, Z.—Tayebi, A.: Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata 131 (2008), 87–97.10.1007/s10711-007-9218-9Search in Google Scholar

[12] Shimada, H.: On Finsler spaces with metricai1i2imyi1yi2yimm, Tensor (N.S.) 33 (1979), 365–372.Search in Google Scholar

[13] Shimada, H.: On the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc. 14 (1977), 41–63.Search in Google Scholar

[14] Tayebi, A.: On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca 68 (2018), 907–928.10.1515/ms-2017-0154Search in Google Scholar

[15] Tayebi, A.: On the theory of 4-th root Finsler metrics, Tbil. Math. J. 12(1) (2019), 83–92.10.32513/tbilisi/1553565628Search in Google Scholar

[16] Tayebi, A.—Najafi, B.: On a class of homogeneous Finsler metrics, J. Geom. Phys. 140 (2019), 265–270.10.1016/j.geomphys.2019.01.006Search in Google Scholar

[17] Tayebi, A.—Najafi, B.: On m-th root Finsler metrics, J. Geom. Phys. 61 (2011), 1479–1484.10.1016/j.geomphys.2011.03.012Search in Google Scholar

[18] Tayebi, A.—Najafi, B.: On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I. 349 (2011), 691–693.10.1016/j.crma.2011.06.004Search in Google Scholar

[19] Tayebi, A.—Razgordani, M.: Four families of projectively flat Finsler metrics with K = 1 and their non-Riemannian curvature properties, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 112 (2018), 1463–1485.10.1007/s13398-017-0443-2Search in Google Scholar

[20] Tayebi, A.—Razgordani, M.: On conformally flat fourth root (α, β)-metrics, Differential Geom. Appl. 62 (2019), 253–266.10.1016/j.difgeo.2018.12.002Search in Google Scholar

[21] Tayebi, A.—Shahbazi Nia, M.: A new class of projectively flat Finsler metrics with constant flag curvature K = 1, Differential Geom. Appl. 41 (2015), 123–133.10.1016/j.difgeo.2015.05.003Search in Google Scholar

[22] Xu, B.—Li, B.: On a class of projectively flat Finsler metrics with flag curvature K = 1, Differential Geom. Appl. 31 (2013), 524–532.10.1016/j.difgeo.2013.05.001Search in Google Scholar

[23] Yajima, T.—Nagahama, H.: Finsler geometry for nonlinear path of fluids flow through inhomogeneous media, Nonlinear Anal. Real World Appl. 25 (2015), 1–8.10.1016/j.nonrwa.2015.02.009Search in Google Scholar

[24] Yu, Y.—You, Y.: On Einstein m-th root metrics, Differential Geom. Appl. 28 (2010), 290–294.10.1016/j.difgeo.2009.10.011Search in Google Scholar

Received: 2019-03-14
Accepted: 2019-06-17
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 16.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0341/html
Scroll to top button