Home Mathematics Sugihara algebras and Sugihara monoids: Multisorted dualities
Article
Licensed
Unlicensed Requires Authentication

Sugihara algebras and Sugihara monoids: Multisorted dualities

  • Leonardo M. Cabrer and Hilary A. Priestley
Published/Copyright: January 13, 2020
Become an author with De Gruyter Brill

Abstract

The authors developed in a recent paper natural dualities for finitely generated quasivarieties of Sugihara algebras. They thereby identified the admissibility algebras for these quasivarieties which, via the Test Spaces Method devised by Cabrer et al., give access to a viable method for studying admissible rules within relevance logic, specifically for extensions of the deductive system R-mingle.

This paper builds on the work already done on the theory of natural dualities for Sugihara algebras. Its purpose is to provide an integrated suite of multisorted duality theorems of a uniform type, encompassing finitely generated quasivarieties and varieties of both Sugihara algebras and Sugihara monoids, and embracing both the odd and the even cases. The overarching theoretical framework of multisorted duality theory developed here leads on to amenable representations of free algebras. More widely, it provides a springboard to further applications.

  1. Communicated by Anatolij Dvurečenskij

References

[1] Anderson, A. R.—Belnap, N. D.: Entailment, vol. 1. Princeton University Press, 1975.Search in Google Scholar

[2] Blok, W. J.—Dziobiak, W.: On the lattice of quasivarieties of Sugihara algebras, Studia Logica 45 (1986), 275–280.10.1007/BF00375898Search in Google Scholar

[3] Blount, K.—Tsinakis, C.: The structure of residuated lattices, Internat. J. Algebra Comput. 13 (2003), 437–461.10.1142/S0218196703001511Search in Google Scholar

[4] Cabrer, L. M.— Freisberg, B.— Metcalfe, G.— Priestley, H. A.: Checking admissibility using natural dualities, ACM Trans. Comput. Logic 20(1) (2019), Art. 2, https://arxiv.org/abs/1801.02046.10.1145/3275115Search in Google Scholar

[5] Cabrer, L. M.— Priestley, H. A.: Coproducts of distributive lattice-based algebras, Algebra Universalis 72 (2014), 251–286.10.1007/s00012-014-0302-3Search in Google Scholar

[6] Cabrer, L. M.— Priestley, H. A.: Distributive bilattices from the perspective of natural duality theory, Algebra Universalis 73 (2015), 103–141.10.1007/s00012-015-0316-5Search in Google Scholar

[7] Cabrer, L. M.— Priestley, H. A.: Gödel algebras: interactive dualities and their applications, Algebra Universalis 74 (2015), 87–116.10.1007/s00012-015-0339-ySearch in Google Scholar

[8] Cabrer, L. M.— Priestley, H. A.: Sugihara algebras: admissibility algebras via the test spaces method, J. Pure Appl. Algebra, https://doi.org/10.1016/j.jpaa.2019.106228, https://arxiv.org/abs/1809.07816v2.10.1016/j.jpaa.2019.106228Search in Google Scholar

[9] Cabrer, L. M.— Priestley, H. A.: Sugihara algebras and Sugihara monoids: free algebras, (manuscript).Search in Google Scholar

[10] Clark, D. M.— Davey, B. A.: The quest for strong dualities, J. Austral. Math. Soc. Ser. A 58 (1995), 248–280.10.1017/S1446788700038283Search in Google Scholar

[11] Clark, D. M.— Davey, B.A.: Natural Dualities for the Working Algebraist, Cambridge Stud. Adv. Math. 57, Cambridge University Press, Cambridge, 1998.Search in Google Scholar

[12] Cornish, W. H.— Fowler, P.R.: Coproducts of Kleene algebras, J. Austral. Math. Soc. Ser. A 27 (1979), 209–220.10.1017/S1446788700012131Search in Google Scholar

[13] Davey, B. A.: On the lattice of subvarieties, Houston J. Math. 5 (1979), 183–192.Search in Google Scholar

[14] Davey, B. A.— Gair, A.: Restricted Priestley dualities and discriminator varieties, Studia Logica 105 (2017), 843–872.10.1007/s11225-017-9713-4Search in Google Scholar

[15] Davey, B. A.—: Haviar, M.— Pitkethly, J. G.: Full dualisability is independent of the generating algebra, Algebra Universalis 67 (2012), 257–272.10.1007/s00012-012-0180-5Search in Google Scholar

[16] Davey, B. A.— Haviar, M.— Priestley, H. A.: Piggyback dualities revisited, Algebra Universalis 76 (2016), 245–285.10.1007/s00012-016-0395-ySearch in Google Scholar

[17] Davey, B. A.— Priestley, H. A.: Generalised piggyback dualities and applications to Ockham algebras, Houston J. Math. 13 (1987), 151–198.Search in Google Scholar

[18] Davey, B. A.— Talukder, M. R.: Functor category dualities for varieties of Heyting algebras, J. Pure Appl. Algebra 178 (2003), 49–71.10.1016/S0022-4049(02)00168-8Search in Google Scholar

[19] Davey, B. A.— Werner, H.: Dualities and equivalences for varieties of algebras. In: Contributions to lattice theory (Szeged, 1980), Colloq. Math. Soc. János Bolyai 33, North-Holland, Amsterdam, 1983, pp. 101–275.Search in Google Scholar

[20] Davey, B. A.— Werner, H.: Piggyback-Dualitäten, Bull. Austral. Math. Soc. 32 (1985), 1–32.10.1017/S0004972700009680Search in Google Scholar

[21] Dunn, J. M.: Algebraic completeness for R-mingle and its extensions, J. Symbolic Logic 35 (1970), 1–13.10.2307/2271149Search in Google Scholar

[22] Fussner, W.— Galatos, N.: Categories of models of R-mingle, Ann. Pure Appl. Logic 170 (2019), 1188–1242.10.1016/j.apal.2019.05.003Search in Google Scholar

[23] Galatos, N.— Jipsen, P.— Kowalski, T.— Ono, H.: Residuated Lattices: an Algebraic Glimpse at Substructural Logics. Stud. Logic Found. Math. 151, Elsevier B. V., Amsterdam, 2007.Search in Google Scholar

[24] Galatos, N.— Raftery, J. G.: A category equivalence for odd Sugihara monoids and its applications, J. Pure Appl. Algebra 216 (2012), 2177–2192.10.1016/j.jpaa.2012.02.006Search in Google Scholar

[25] Galatos, N.— Raftery, J. G.: Idempotent residuated structures: some category equivalences and their applications, Trans. Amer. Math. Soc. 367 (2015), 3189–3223.10.1090/S0002-9947-2014-06072-8Search in Google Scholar

[26] Kreisel, G.— Krivine, J. L.: Elements of Mathematical Logic. Model Theory. Stud. Logic Found. Math., North-Holland Publishing Co., Amsterdam, 1967.Search in Google Scholar

[27] Metcalfe, G.: An Avron rule for fragments of R-mingle, J. Logic Comput. 26 (2016), 381–393.10.1093/logcom/ext031Search in Google Scholar

[28] Moraschini, T.—Raftery, J. G.— Wannenburg, J. J.: Varieties of De Morgan monoids: minimality and irreducible algebras, J. Pure Appl. Algebra 223 (2019), 2780–2803.10.1016/j.jpaa.2018.09.015Search in Google Scholar

[29] Olson, J. S.— Raftery, J. G.: Positive Sugihara monoids, Algebra Universalis 57 (2007), 75–99.10.1007/s00012-007-2022-4Search in Google Scholar

[30] Priestley, H. A.: Natural dualities for varieties of n-valued Łukasiewicz algebras, Studia Logica 54 (1995), 333–370.10.1007/BF01053004Search in Google Scholar

Received: 2019-03-06
Accepted: 2019-07-12
Published Online: 2020-01-13
Published in Print: 2020-02-25

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 15.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/ms-2017-0327/html
Scroll to top button