Startseite Naturwissenschaften Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes

  • Rubén F. Gutiérrez-Hernández EMAIL logo , Ricardo Bello-Mendoza , Javier F. Valle-Mora , Juan M. Peralta-Hernández , Edi A. Malo , Aracely Hernández-Ramírez und Hugo A. Nájera-Aguilar
Veröffentlicht/Copyright: 2. August 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The electrochemical generation of hydrogen peroxide with boron doped diamond electrodes was experimentally investigated to assess the influence of basic operating parameters on H2O2 production rate. Experiments were conducted in an undivided electrolytic cell, at room temperature, and different operating conditions of air bubbling, stirring and current density. Current density was the most influencing parameter affecting H2O2 generation. Therefore, an equation was proposed to describe hydrogen peroxide generation at BDD electrodes as a function of current density and electrolysis time. Experimental data showed that H2O2 concentration significantly increased during the first 45 min of electrolysis, and thereafter it remained constant until the end of the reaction. The equation was able to describe well this H2O2 production pattern. Additional experiments were conducted to validate the proposed equation. Good agreement between theoretical predictions and experimental data, as assessed by the Chi square goodness of fit test, was observed.

Acknowledgement

R.F. Gutiérrez-Hernández gratefully acknowledges the scholarships provided by CONACyT and DGEST.

References

1 Kuo WS, Ho YY. Wat. Sci. Technol. 2010; 62: 1424-1431.10.2166/wst.2010.367Suche in Google Scholar

2 Micó MM, Chourdaki S, Bacardit J, Sans C. Ozone Sci. Eng. 2010; 32: 259-264.10.1080/01919512.2010.493477Suche in Google Scholar

3 Bayata M, Sohrabia M, Royaeea SJ. J. Ind. Eng. Chem. 2012; 18: 957-962.10.1016/j.jiec.2011.09.004Suche in Google Scholar

4 Shimizua A, Tokumura M, Nakajima K, Kawase YJ. J. Hazard. Mater. 2012; 201-202:606710.1016/j.jhazmat.2011.11.009Suche in Google Scholar

5 Quiroga JM, Ariaza A, Manzano MA. J. Environ. Sci. Health A. 2009; 44:1120-1126.10.1080/10934520903005145Suche in Google Scholar

6 Riaza-Frutos A, Quiroga JM, Manzano MA. J. Environ. Eng. 2007; 133: 541-547.10.1061/(ASCE)0733-9372(2007)133:5(541)Suche in Google Scholar

7 Li Y, Zhang A. Chemosphere. 2014; 105: 24-30.10.1016/j.chemosphere.2013.10.043Suche in Google Scholar PubMed

8 Klavarioti M, Mantzavinos D, Kassino D. Environ. Int. 2009; 35: 402-417.10.1016/j.envint.2008.07.009Suche in Google Scholar PubMed

9 Bustos YA, Rangel-Peraza JG, Rojas-Valencia MN, Bandala ER, Alvarez-Gallegos A, Vargas-Estrada L. Environ. Tech. 2016; 37: 815-82710.1080/09593330.2015.1086820Suche in Google Scholar PubMed

10 Bustos-Terrones Y, Rojas-Valencia MN, Alvarez-Gallegos A, Vargas L, García P. J. Environ. Prot. 2015; 6:781-791.10.4236/jep.2015.68071Suche in Google Scholar

11 Guinea E, Centellas F, Garrido JA, Rodríguez RM, Arias C, Cabot P, Brillas E. Apll. Catal. B. 2009; 89: 459-468.10.1016/j.apcatb.2009.01.004Suche in Google Scholar

12 Wang A, Qu J, Ru J, Liu H, Ge J. Dyes Pigm. 2005; 65: 227-233.10.1016/j.dyepig.2004.07.019Suche in Google Scholar

13 Forti JC, Nunes JA, Lanza MR, Bertazzoli R. J. Appl. Electrochem. 2007; 37: 527-532.10.1007/s10800-006-9285-xSuche in Google Scholar

14 Oturan MA. J. Appl. Electrochem. 2000; 30: 475-482.10.1023/A:1003994428571Suche in Google Scholar

15 Zhou M, Yu Q, Lei L, Barton G. Sep. Purif. Technol. 2007; 57: 380-387.10.1016/j.seppur.2007.04.021Suche in Google Scholar

16 Do Santos AJ, De Lima MD, Da Silva DR, Garcia-Segura S, Martínez-Huitle CA. Electrochim. Acta. 2016; 208:156-163.10.1016/j.electacta.2016.05.015Suche in Google Scholar

17 El-Ghenymy A, Rodríguez RM, Brillas E, Oturan N, Oturan MA. Environ. Sci. Pollut. R. 2014; 21:8364-8378Suche in Google Scholar

18 Brillas E, Sirés I, Oturan MA. Chem. Rev. 2009; 109: 6570-6631.10.1021/cr900136gSuche in Google Scholar PubMed

19 Kornienko GV, Chaenko NV, Vasil’eva IS, Kornienko VL. Russ. J. Electrochem. 2004; 40:148-152.10.1023/B:RUEL.0000016327.07214.69Suche in Google Scholar

20 Da Pozzo A, Palma LD, Merli C, Petrucci E. J. Appl. Electrochem. 2005; 35: 413-419.10.1007/s10800-005-0800-2Suche in Google Scholar

21 Garcia-Segura S, Dos Santos EV, Martínez-Huitle CA. Electrochem. Commun. 2015; 59: 52-55.10.1016/j.elecom.2015.07.002Suche in Google Scholar

22 Garcia-Segura S, Mostafa E, Baltruschat H. Appl. Catal. B: Environ. 2017, 207:376-384.10.1016/j.apcatb.2017.02.046Suche in Google Scholar

23 Oturan MA, Brillas E. Port. Electrochim. Acta. 2007; 25:1-18.10.4152/pea.200701001Suche in Google Scholar

24 Brillas E, Garrido JA, Rodríguez RM, Arias C, Cabot PL, Centellas F. Port. Electrochim. Acta. 2008; 15-46.10.4152/pea.200801015Suche in Google Scholar

25 Da Pozzo A, Petrucci E, Merli C. J. Appl. Electrochem. 2008; 997-1003.10.1007/s10800-008-9524-4Suche in Google Scholar

26 Panizza M, Cerisola G. Electrochim. Acta. 2008; 54: 876-878.10.1016/j.electacta.2008.07.063Suche in Google Scholar

27 Garcia-Segura S, Brillas E. Electrochim. Acta. 2014; 140:384-395.10.1016/j.electacta.2014.04.009Suche in Google Scholar

28 Solano AMS, Garcia-Segura S, Martínez-Huitle CA, Brillas E. Appl. Catal. B: Environ. 2015; 168-169:559-571.10.1016/j.apcatb.2015.01.019Suche in Google Scholar

29 Eisenberg GM. Ind. Eng. Chem. 1943; 15:327-328.Suche in Google Scholar

30 Qiang Z, Chang JH, Huang CP. Water Res. 2002; 36:85-94.10.1016/S0043-1354(01)00235-4Suche in Google Scholar

31 Liu H, Li XZ, Leng YJ, Wang C. Water Res. 2007; 41:1161-1167.10.1016/j.watres.2006.12.006Suche in Google Scholar PubMed

Received: 2017-4-3
Revised: 2017-5-29
Accepted: 2017-6-2
Published Online: 2017-8-2

© 2017 by Walter De Gruyter GmbH and Sycamore Global Publications LLC

Artikel in diesem Heft

  1. Editorial
  2. Excitation Kinetics of Oxygen O(1D) State in Low-Pressure Oxygen Plasma and the Effect of Electron Energy Distribution Function
  3. Using amino-functionalized Fe3O4-WO3 nanoparticles for diazinon removal from synthetic and real water samples in presence of UV irradiation
  4. Treatment of high salinity wastewater using CWPO process for reuse
  5. Electrochemical Advanced Oxidation Processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs)
  6. Effect of feedstock impurities on activity and selectivity of V-Mo-Nb-Te-Ox catalyst in ethane oxidative dehydrogenation
  7. Photocatalytic Degradation of Azo Dyes Over Semiconductors Supported on Polyethylene Terephthalate and Polystyrene Substrates
  8. Effects of calcination temperature on sol-gel synthesis of porous La2Ti2O7 photocatalyst on degradation of Reactive Brilliant Red X3B
  9. ClO2-oxidation-based demulsification of oil-water transition layer in oilfields: An experimental study
  10. Semi-permanent hair dyes degradation at W/WO3 photoanode under controlled current density assisted by visible light
  11. Degradation of PVA (polyvinyl alcohol) in wastewater by advanced oxidation processes
  12. Degradation of imidacloprid insecticide in a binary mixture with propylene glycol by conventional fenton process
  13. Gemini surfactant-assisted synthesis of BiOBr with superior visible light-induced photocatalytic activity towards RhB degradation
  14. Photocatalytic paraquat degradation over TiO2 modified by hydrothermal technique in alkaline solution
  15. Enhancement of Profenofos Remediation Using Stimulated Bioaugmentation Technique
  16. Mechanistic insight on the sonolytic degradation of phenol at interface and bulk using additives
  17. Biosolubilization of low-grade rock phosphate by mixed thermophilic iron-oxidizing bacteria
  18. Degradation of methyl orange using dielectric barrier discharge water falling film reactor
  19. Rapid prediction of hydrogen peroxide concentration eletrogenerated with boron doped diamond electrodes
Heruntergeladen am 2.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/jaots-2017-0037/html
Button zum nach oben scrollen